Efficient Algorithm for Sparse Tensor-variate Gaussian Graphical Models via Gradient Descent

被引:0
作者
Xu, Pan [1 ]
Zhang, Tingting [1 ]
Gu, Quanquan [1 ]
机构
[1] Univ Virginia, Charlottesville, VA 22903 USA
来源
ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54 | 2017年 / 54卷
基金
美国国家科学基金会;
关键词
COVARIANCE ESTIMATION; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the sparse tensor-variate Gaussian graphical model (STGGM), where each way of the tensor follows a multivariate normal distribution whose precision matrix has sparse structures. In order to estimate the precision matrices, we propose a sparsity constrained maximum likelihood estimator. However, due to the complex structure of the tensor-variate GGMs, the likelihood based estimator is non-convex, which poses great challenges for both computation and theoretical analysis. In order to address these challenges, we propose an efficient alternating gradient descent algorithm to solve this estimator, and prove that, under certain conditions on the initial estimator, our algorithm is guaranteed to linearly converge to the unknown precision matrices up to the optimal statistical error. Experiments on both synthetic data and real world brain imaging data corroborate our theory.
引用
收藏
页码:923 / 932
页数:10
相关论文
共 40 条
[1]  
Allen G., 2012, INT C ARTIFICIAL INT
[2]  
[Anonymous], NIPS
[3]  
[Anonymous], 2016, ARXIV160603168
[4]  
[Anonymous], 2014, COMPUT SCI
[5]  
[Anonymous], 2015, ADV NEURAL INFORM PR
[6]  
[Anonymous], 2013, STOC
[7]  
[Anonymous], 2014, ARXIV14128729
[8]  
Arora S., 2015, C LEARN THEOR PMLR, V40
[9]  
Bhojanapalli S., 2015, Dropping convexity for faster semi-definite optimization
[10]   ESTIMATING SPARSE PRECISION MATRIX: OPTIMAL RATES OF CONVERGENCE AND ADAPTIVE ESTIMATION [J].
Cai, T. Tony ;
Liu, Weidong ;
Zhou, Harrison H. .
ANNALS OF STATISTICS, 2016, 44 (02) :455-488