Lumps and rogue waves on the periodic backgrounds for a (2+1)-dimensional nonlinear Schrodinger equation in a Heisenberg ferromagnetic spin chain

被引:2
|
作者
Du, Xia-Xia [1 ,2 ]
Tian, Bo [1 ,2 ]
Qu, Qi-Xing [3 ]
Zhang, Chen-Rong [1 ,2 ]
Chen, Su-Su [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[3] Univ Int Business & Econ, Sch Informat, Beijing 100029, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2021年 / 35卷 / 22期
基金
中国国家自然科学基金;
关键词
Heisenberg ferromagnetic spin chain; (2+1)-dimensional nonlinear Schrodinger equation; lump-periodic waves; rogue-periodic waves; Lie symmetry transformations; SOLITON SOLUTIONS; INTEGRABLE MODEL; INSTABILITY;
D O I
10.1142/S0217984921503218
中图分类号
O59 [应用物理学];
学科分类号
摘要
Spin excitations for the magnetic materials are used in the nonlinear signal processing devices and microwave communication systems. Under consideration in this paper is a (2 + 1)-dimensional nonlinear Schrodinger (NLS) equation which describes the spin dynamics for a Heisenberg ferromagnetic spin chain. Through a reduced transformation, we convert such an equation into the (1 + 1)-dimensional focusing NLS equation. Via the rogue-periodic solutions associated with two types of the Lie symmetry transformations of the NLS equation, we present the lump- and rogue-periodic solutions. Besides, the lump and mixed lump-soliton solutions are deduced. We graphically investigate the lump- and rogue-periodic waves and find that the amplitudes of the lumps and rogue waves are negatively related to vertical bar A vertical bar and vertical bar gamma vertical bar; the distances between two valleys of the lumps and widths of the rogue waves are affected by J and J(1), where A is the uniaxial crystal field anisotropy parameter, J and J(1) are related to the bilinear exchange interaction, gamma is the lattice parameter.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] PARALLEL LINE ROGUE WAVES OF A (2+1)-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION DESCRIBING THE HEISENBERG FERROMAGNETIC SPIN CHAIN
    Liu, Wei
    ROMANIAN JOURNAL OF PHYSICS, 2017, 62 (7-8):
  • [2] Rogue wave solutions on different periodic backgrounds for the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation
    Liu, Ya-Hui
    Hao, Hui-Qin
    Zhang, Jian-Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (01)
  • [3] Nonlinear localized waves for a (2+1)-dimensional Heisenberg ferromagnetic spin chain equation
    Du, Xia-Xia
    Tian, Bo
    Zhang, Chen-Rong
    Chen, Su-Su
    PHYSICA SCRIPTA, 2021, 96 (07)
  • [4] Lax pair, interactions and conversions of the nonlinear waves for a (2+1)-dimensional nonlinear Schrodinger equation in a Heisenberg ferromagnetic spin chain
    Du, Xia-Xia
    Tian, Bo
    Tian, He-Yuan
    Sun, Yan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (07):
  • [5] Characteristics of rogue waves for a (2+1)-dimensional Heisenberg ferromagnetic spin chain system
    Li, Bang-Qing
    Ma, Yu-Lan
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 474 : 537 - 543
  • [6] Dark solitons interaction for a (2+1)-dimensional nonlinear Schrodinger equation in the Heisenberg ferromagnetic spin chain
    Zhao, Xue-Hui
    Tian, Bo
    Liu, De-Yin
    Wu, Xiao-Yu
    Chai, Jun
    Guo, Yong-Jiang
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 100 : 587 - 595
  • [7] Soliton and rogue-wave solutions for a (2+1)-dimensional fourth-order nonlinear Schrodinger equation in a Heisenberg ferromagnetic spin chain
    Li, Hui-Min
    Tian, Bo
    Xie, Xi-Yang
    Chai, Jun
    Liu, Lei
    Gao, Yi-Tian
    NONLINEAR DYNAMICS, 2016, 86 (01) : 369 - 380
  • [8] Breathers and rogue waves of the fifth-order nonlinear Schrodinger equation in the Heisenberg ferromagnetic spin chain
    Sun, Wen-Rong
    Tian, Bo
    Zhen, Hui-Ling
    Sun, Ya
    NONLINEAR DYNAMICS, 2015, 81 (1-2) : 725 - 732
  • [9] Traveling waves and bifurcations for the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation
    Yang, Deniu
    OPTIK, 2021, 248 (248):
  • [10] Analytic solutions of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation
    Bakicierler, Gizel
    Alfaqeih, Suliman
    Misirli, Emine
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 582