CONTRIBUTIONS OF GEOPHYSICAL AND C-BAND SAR DATA FOR ESTIMATION OF FIELD SCALE SOIL MOISTURE

被引:0
作者
Berg, Aaron [1 ]
Krafczek, Mitchell [1 ]
Clewley, Daniel [2 ]
Whitcomb, Jane [3 ]
Akbar, Ruzbeh [4 ]
Moghaddam, Mahta [3 ]
McNarin, Heather [5 ]
机构
[1] Univ Guelph, Dept Geog, Guelph, ON, Canada
[2] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England
[3] Univ Southern Calif, Los Angeles, CA 90089 USA
[4] MIT, Cambridge, MA 02139 USA
[5] Agr & Agri Food Canada, Sci & Technol Branch, Ottawa, ON, Canada
来源
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2018年
关键词
Soil Moisture; SAR; RADARSAT-2; CALIBRATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study we evaluate a Random Forest (RF) model for characterizing the spatial variability of soil moisture based on model derived from in situ soil moisture samples, geophysical data and RADAR observations. The RF model is run with and without C-band SAR backscatter to understand the importance of the inclusion of SAR data for mapping of soil moisture at field scale. The inclusion of SAR data in the RF resulted in a modest improvement however the geophysical parameters (e.g. soil types and terrain properties) were of greater importance.
引用
收藏
页码:6127 / 6130
页数:4
相关论文
共 17 条
[1]   Sensitivity of C-band SAR polarimetric variables to unvegetated agricultural fields [J].
Adams, Justin R. ;
Berg, Aaron A. ;
McNairn, Heather ;
Merzouki, Amine .
CANADIAN JOURNAL OF REMOTE SENSING, 2013, 39 (01) :1-16
[2]  
[Anonymous], METRIKA
[3]   A Method for Upscaling In Situ Soil Moisture Measurements to Satellite Footprint Scale Using Random Forests [J].
Clewley, Daniel ;
Whitcomb, Jane B. ;
Akbar, Ruzbeh ;
Silva, Agnelo R. ;
Berg, Aaron ;
Adams, Justin R. ;
Caldwell, Todd ;
Entekhabi, Dara ;
Moghaddam, Mahta .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (06) :2663-2673
[4]   Towards operational radar-only crop type classification: comparison of a traditional decision tree with a random forest classifier [J].
Deschamps, B. ;
McNairn, H. ;
Shang, J. ;
Jiao, X. .
CANADIAN JOURNAL OF REMOTE SENSING, 2012, 38 (01) :60-68
[5]   A combination of DISPATCH downscaling algorithm with CLASS land surface scheme for soil moisture estimation at fine scale during cloudy days [J].
Djamai, Najib ;
Magagi, Ramata ;
Goita, Kalifa ;
Merlin, Olivier ;
Kerr, Yann ;
Roy, Alexandre .
REMOTE SENSING OF ENVIRONMENT, 2016, 184 :1-14
[6]  
Garnaud C, 2017, J HYDROMETEOROL, V18, P573, DOI [10.1175/JHM-D-16-0131.1, 10.1175/jhm-d-16-0131.1]
[7]   Hyperresolution Land Surface Modeling in the Context of SMAP Cal-Val [J].
Garnaud, Camille ;
Belair, Stephane ;
Berg, Aaron ;
Rowlandson, Tracy .
JOURNAL OF HYDROMETEOROLOGY, 2016, 17 (01) :345-352
[8]   Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data [J].
Gherboudj, Imen ;
Magagi, Ramata ;
Berg, Aaron A. ;
Toth, Brenda .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (01) :33-43
[9]   The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch Calibration and Validation of the SMAP Soil Moisture Algorithms [J].
McNairn, Heather ;
Jackson, Thomas J. ;
Wiseman, Grant ;
Belair, Stephane ;
Berg, Aaron ;
Bullock, Paul ;
Colliander, Andreas ;
Cosh, Michael H. ;
Kim, Seung-Bum ;
Magagi, Ramata ;
Moghaddam, Mahta ;
Njoku, Eni G. ;
Adams, Justin R. ;
Homayouni, Saeid ;
Ojo, Emmanuel RoTimi ;
Rowlandson, Tracy L. ;
Shang, Jiali ;
Goita, Kalifa ;
Hosseini, Mehdi .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (05) :2784-2801
[10]  
McNarin H., 2016, SMAPVEX16 MB SMAP VA