Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li-S batteries with excellent lithium storage performance

被引:197
作者
Wang, Yun-Xiao [1 ,3 ]
Huang, Ling [1 ]
Sun, Li-Chao [1 ]
Xie, Su-Yuan [1 ]
Xu, Gui-Liang [1 ]
Chen, Shu-Ru [1 ]
Xu, Yue-Feng [1 ]
Li, Jun-Tao [2 ]
Chou, Shu-Lei [3 ]
Dou, Shi-Xue [3 ]
Sun, Shi-Gang [1 ]
机构
[1] Xiamen Univ, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Sch Energy Res, Xiamen 361005, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
关键词
ELECTROCHEMICAL PROPERTIES; REVERSIBLE CAPACITY; ION BATTERY; POLYSULFIDES; COMPOSITES; ANODE; NANOWIRES; ELECTRODE; CARBONS; SPINEL;
D O I
10.1039/c2jm15041g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper reports the facile synthesis of a unique interleaved expanded graphite-embedded sulphur nanocomposite (S-EG) by melt-diffusion strategy. The SEM images of the S-EG materials indicate the nanocomposites consist of nanosheets with a layer-by-layer structure. Electrochemical tests reveal that the nanocomposite with a sulphur content of 60% (0.6S-EG) can deliver the highest discharge capacity of 1210.4 mAh g(-1) at a charge-discharge rate of 280 mA g(-1) in the first cycle, the discharge capacity of the 0.6S-EG remains as high as 957.9 mAh g(-1) after 50 cycles of charge-discharge. Furthermore, at a much higher charge-discharge rate of 28 A g(-1), the 0.6S-EG cathode can still deliver a high reversible capacity of 337.5 mAh g(-1). The high sulphur utilization, excellent rate capability and reduced over-discharge phenomenon of the 0.6S-EG material are exclusively attributed to the particular microstructure and composition of the cathode.
引用
收藏
页码:4744 / 4750
页数:7
相关论文
共 48 条
[21]   Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries [J].
Lian, Peichao ;
Zhu, Xuefeng ;
Xiang, Hongfa ;
Li, Zhong ;
Yang, Weishen ;
Wang, Haihui .
ELECTROCHIMICA ACTA, 2010, 56 (02) :834-840
[22]   Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries [J].
Lian, Peichao ;
Zhu, Xuefeng ;
Liang, Shuzhao ;
Li, Zhong ;
Yang, Weishen ;
Wang, Haihui .
ELECTROCHIMICA ACTA, 2010, 55 (12) :3909-3914
[23]   Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery [J].
Liang, Chengdu ;
Dudney, Nancy J. ;
Howe, Jane Y. .
CHEMISTRY OF MATERIALS, 2009, 21 (19) :4724-4730
[24]   Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes [J].
Marmorstein, D ;
Yu, TH ;
Striebel, KA ;
McLarnon, FR ;
Hou, J ;
Cairns, EJ .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :219-226
[25]   Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes [J].
Nam, KT ;
Kim, DW ;
Yoo, PJ ;
Chiang, CY ;
Meethong, N ;
Hammond, PT ;
Chiang, YM ;
Belcher, AM .
SCIENCE, 2006, 312 (5775) :885-888
[26]   LITHIUM-SULFUR BATTERY - EVALUATION OF DIOXOLANE-BASED ELECTROLYTES [J].
PELED, E ;
STERNBERG, Y ;
GORENSHTEIN, A ;
LAVI, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (06) :1621-1625
[27]   LITHIUM-DISSOLVED SULFUR BATTERY WITH AN ORGANIC ELECTROLYTE [J].
RAUH, RD ;
ABRAHAM, KM ;
PEARSON, GF ;
SURPRENANT, JK ;
BRUMMER, SB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (04) :523-527
[28]   FORMATION OF LITHIUM POLYSULFIDES IN APROTIC MEDIA [J].
RAUH, RD ;
SHUKER, FS ;
MARSTON, JM ;
BRUMMER, SB .
JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1977, 39 (10) :1761-1766
[29]   The lithium/sulfur rechargeable cell - Effects of electrode composition and solvent on cell performance [J].
Shim, J ;
Striebel, KA ;
Cairns, EJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1321-A1325
[30]   Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3-TinO2n-1 composite polymer electrolytes for lithium/sulfur battery [J].
Shin, JH ;
Kim, KW ;
Ahn, HJ ;
Ahn, JH .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2002, 95 (02) :148-156