Genetic diversity of an amphicarpic species, Amphicarpaea edgeworthii Benth. (Leguminosae) based on RAPD markers

被引:13
作者
Zhang, Y [1 ]
Yang, J [1 ]
Rao, GY [1 ]
机构
[1] Peking Univ, Coll Life Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
amphicarpy; genetic variation; RAPD; Amphicarpaea edgeworthii Benth;
D O I
10.1016/j.bse.2005.07.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Amphicarpaea edgeworthii Benth. is an amphicarpic legume widespread in China. Amphicarpy describes the phenomenon that a plant produces aerial as well as subterranean fruits. A. edgeworthii can reproduce via three kinds of flowers: aerial chasmogamous flowers, aerial cleistogamous flowers, and subterranean cleistogamous flowers. Although there are some studies on the population genetic structure of species with both chasmogamous and cleistogamous flowers, none has been done for that of an amphicarpic species so far. The present study uses random amplified polymorphic DNA (RAPD) to assess level and pattern of genetic variation in 15 natural populations of A. edgeworthii. A total of 131 stable and clearly scored RAPD bands were achieved from 13 primers. The average genetic diversity within populations estimated by Shannon's information index was 0.218 at the population level, but ranged from 0.119 to 0.302, which was significantly different (P < 0.01). Different statistical analyses revealed a high level of genetic differentiation among populations (G(ST) = 0.4730.527). Thus, the pattern of genetic structure of A. edgeworthii is consistent with that of an inbreeding species. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1246 / 1257
页数:12
相关论文
共 50 条
  • [21] Genetic diversity among three Morinda species using RAPD and ISSR markers
    Singh, D. R.
    Srivastava, Abhay K.
    Srivastava, Amit
    Srivastava, R. C.
    INDIAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (03): : 285 - 293
  • [22] The assessment of genetic diversity of Castanea species by RAPD, AFLP, ISSR, and SSR markers
    Abdelhamid, Sofiane
    Le, Cong-Linh
    Conedera, Marco
    Kuepfer, Philippe
    TURKISH JOURNAL OF BOTANY, 2014, 38 (05) : 835 - 850
  • [23] Genetic diversity analysis in Opal cotton hybrids based on SSR, ISSR, and RAPD markers
    Noormohammadi, Z.
    Farahani, Y. Hasheminejad-Ahangarani
    Sheidai, M.
    Ghasemzadeh-Baraki, S.
    Alishah, O.
    GENETICS AND MOLECULAR RESEARCH, 2013, 12 (01): : 256 - 269
  • [24] Genetic relationship and diversity in Indian coconut accessions based on RAPD markers
    Upadhyay, A
    Jayadev, K
    Manimekalai, R
    Parthasarathy, VA
    SCIENTIA HORTICULTURAE, 2004, 99 (3-4) : 353 - 362
  • [25] Genetic relationships among species of the genus Bothrops based on RAPD markers
    Grazziotin, F
    Echeverrigaray, S
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2005, 48 (03) : 359 - 365
  • [26] Genetic relationships among Heliconia (Heliconiaceae) species based on RAPD markers
    Marouelli, L. P.
    Inglis, P. W.
    Ferreira, M. A.
    Buso, G. S. C.
    GENETICS AND MOLECULAR RESEARCH, 2010, 9 (03): : 1377 - 1387
  • [27] Genetic diversity in Cucurbita pepo landraces revealed by RAPD and SSR markers
    Ntuli, Nontuthuko R.
    Tongoona, Pangirayi B.
    Zobolo, Alpheus M.
    SCIENTIA HORTICULTURAE, 2015, 189 : 192 - 200
  • [28] Genetic diversity of Prunus rootstocks analyzed by RAPD markers
    A.M. Casas
    E. Igartua
    G. Balaguer
    M.A. Moreno
    Euphytica, 1999, 110 : 139 - 149
  • [29] Using RAPD markers for assessment of genetic diversity in chickens
    Romanov, MN
    Weigend, S
    ARCHIV FUR GEFLUGELKUNDE, 2001, 65 (04): : 145 - 148
  • [30] Genetic diversity of Pinus massoniana revealed by RAPD markers
    Peng, SL
    Li, QF
    Li, D
    Wang, ZF
    Wang, DP
    SILVAE GENETICA, 2003, 52 (02) : 60 - 63