Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films

被引:93
作者
Niu, J. J. [1 ]
Zhang, J. Y. [1 ]
Liu, G. [1 ]
Zhang, P. [1 ]
Lei, S. Y. [1 ]
Zhang, G. J. [1 ]
Sun, J. [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Multilayer films; Deformation mechanisms; Strain-rate sensitivity; Size effect; ULTRAFINE GRAIN SIZES; NANOCRYSTALLINE METALS; PLASTIC-DEFORMATION; ACTIVATION VOLUME; MICRO-INDENTATION; FCC METALS; BEHAVIOR; STRENGTH; COPPER; MICROSTRUCTURE;
D O I
10.1016/j.actamat.2012.03.052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hardness, activation volume and strain-rate sensitivity of Cu/Cr (face-centered cubic (fcc)/body-centered cubic) and Cu/Zr (fcc/hexagonal close-packed) nanostructured multilayer films have been systematically measured as a function of modulation period (L) and modulation ratio (eta), respectively. Significant size effects were found for all the three plastic deformation characteristics, i.e. enhanced hardness and activation volume but reduced strain-rate sensitivity with decreasing the dimension length L. Microstructure evolution was statistically examined to rationalize these size dependences. It was crucially observed that abundant nanotwins existed in the Cu grains, though nanotwin formation was depressed with smaller L. This inverse size-dependent nanotwin formation is responsible for the reduction in strain-rate sensitivity, because the negative effect induced by the decreased nanotwins predominates over the positive effect coming from the raised interfaces/boundaries. A mechanistic model is modified to account for the interface effect as well as the nanotwin effect, which yields calculations of strain-rate sensitivity in broad agreement with the experimental results when L is larger than about 20 nm. Below this critical length size, there are discrepancies between the calculations and the experimental results, due to the change in deformation mechanism from dislocation nucleation/slip in confined layers to dislocation crossing interfaces. A confined layer slip model is also modified by considering the nanotwin strengthening to quantitatively describe the L-dependent hardness. In addition, the effects of constituent phases and their relative content on the activation volume and strain-rate sensitivity of NMFs are discussed with regard to variation in eta. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3677 / 3689
页数:13
相关论文
共 72 条
[1]   HALL-PETCH RELATIONS FOR MULTILAYERED MATERIALS [J].
ANDERSON, PM ;
LI, C .
NANOSTRUCTURED MATERIALS, 1995, 5 (03) :349-362
[2]   Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins [J].
Asaro, RJ ;
Suresh, S .
ACTA MATERIALIA, 2005, 53 (12) :3369-3382
[3]   Phase stability in Al/Ti multilayers [J].
Banerjee, R ;
Zhang, XD ;
Dregia, SA ;
Fraser, HL .
ACTA MATERIALIA, 1999, 47 (04) :1153-1161
[4]   Plastic deformation with reversible peak broadening in nanocrystalline nickel [J].
Budrovic, Z ;
Van Swygenhoven, H ;
Derlet, PM ;
Van Petegem, S ;
Schmitt, B .
SCIENCE, 2004, 304 (5668) :273-276
[5]   Hardness and strain rate sensitivity of nanocrystalline Cu [J].
Chen, J ;
Lu, L ;
Lu, K .
SCRIPTA MATERIALIA, 2006, 54 (11) :1913-1918
[6]   Grain size dependence of tensile properties in ultrafine-grained Cu with nanoscale twins [J].
Chen, X. H. ;
Lu, L. ;
Lu, K. .
SCRIPTA MATERIALIA, 2011, 64 (04) :311-314
[7]   Grain size dependence of the plastic deformation kinetics in Cu [J].
Conrad, H .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 341 (1-2) :216-228
[8]  
Conrad H., 1965, High-strength materials
[9]   Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel [J].
Dalla Torre, F ;
Spätig, P ;
Schäublin, R ;
Victoria, M .
ACTA MATERIALIA, 2005, 53 (08) :2337-2349
[10]   Toward a quantitative understanding of mechanical behavior of nanocrystalline metals [J].
Dao, M. ;
Lu, L. ;
Asaro, R. J. ;
De Hosson, J. T. M. ;
Ma, E. .
ACTA MATERIALIA, 2007, 55 (12) :4041-4065