Periodic conservative solutions of the Camassa-Holm equation

被引:51
作者
Holden, Heige [1 ,2 ]
Raynaud, Xavier [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
[2] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway
关键词
Camassa-Holm equation; periodic solution;
D O I
10.5802/aif.2375
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the periodic Camassa-Holm equation u(t) - u(xxt) + 3uu(x)-2u(x)u(xx)-uu(xxx) = 0 possesses a global continuous semigroup of weak conservative solutions for initial data u vertical bar(t=0) in H-per(1). The result is obtained by introducing per a coordinate transformation into Lagrangian coordinates. To characterize conservative solutions it is necessary to include the energy density given by the positive Radon measure mu with mu(ac), = (u(2) + u(x)(2))dx. The total energy is preserved by the solution.
引用
收藏
页码:945 / 988
页数:44
相关论文
共 35 条
[1]  
Abraham R., 2012, Manifolds, tensor analysis, and applications, V75
[2]  
[Anonymous], FUNCTIONS BOUNDED VA
[3]  
Arnold V I., 1998, Topological Methods in Hydrodynamics
[4]   Multi-peakons and a theorem of Stieltjes [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
INVERSE PROBLEMS, 1999, 15 (01) :L1-L4
[5]  
Bressan A, 2005, METHODS APPL ANAL, V12, P191
[6]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[7]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[8]  
Camassa R., 1994, Adv. Appl. Mech., V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[9]   Global weak solutions to a generalized hyperelastic-rod wave equation [J].
Coclite, GM ;
Holden, H ;
Karlsen, KH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (04) :1044-1069
[10]  
Coclite GM, 2005, DISCRETE CONT DYN-A, V13, P659