Suppression of hypoxia-inducible factor 1α (HIF-1α) transcriptional activity by the HIF prolyl hydroxylase EGLN1

被引:84
作者
To, KKW [1 ]
Huang, LE [1 ]
机构
[1] NCI, Human Carcinogenesis Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1074/jbc.M504342200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cellular response to hypoxia is, at least in part, mediated by the transcriptional regulation of hypoxia-responsive genes involved in balancing the intracellular ATP production and consumption. Recent evidence suggests that the transcription factor, HIF-1 alpha, functions as a master regulator of oxygen homeostasis by controlling a broad range of cellular events in hypoxia. In normoxia, HIF-1 alpha is targeted for destruction via prolyl hydroxylation, an oxygen-dependent modification that signals for recognition by the ubiquitin ligase complex containing the von Hippel-Lindau tumor suppressor. Three HIF prolyl hydroxylases (EGLN1, EGLN2, and EGLN3) have been identified in mammals, among which EGLN1 and EGLN3 are hypoxia-inducible at their mRNA levels in an HIF-1 alpha-dependent manner. In this study, we demonstrated that apart from promoting HIF-1 alpha proteolysis in normoxia, EGLN1 specifically represses HIF-1 alpha transcriptional activity in hypoxia. Ectopic expression of EGLN1 inhibited HIF-1 alpha transcriptional activity without altering its protein levels in a von Hippel-Lindau-deficient cell line, indicating a discrete activity of EGLN1 in transcriptional repression. Conversely, silencing of EGLN1 expression augmented HIF-1 alpha transcriptional activity and its target gene expression in hypoxia. Thus, we proposed that the accumulated EGLN1 in hypoxia acts as a negative-feedback mechanism to modulate HIF-1 alpha target gene expression. Our finding also provided new insight into the pharmacological manipulation of the HIF prolyl hydroxylase for ischemic diseases.
引用
收藏
页码:38102 / 38107
页数:6
相关论文
共 51 条
[1]   Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor [J].
Appelhoff, RJ ;
Tian, YM ;
Raval, RR ;
Turley, H ;
Harris, AL ;
Pugh, CW ;
Ratcliffe, PJ ;
Gleadle, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (37) :38458-38465
[2]   An essential role for p300/CBP in the cellular response to hypoxia [J].
Arany, Z ;
Huang, LE ;
Eckner, R ;
Bhattacharya, S ;
Jiang, C ;
Goldberg, MA ;
Bunn, HF ;
Livingston, DM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :12969-12973
[3]   OS-9 interacts with hypoxia-inducible factor 1α and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1α [J].
Baek, JH ;
Mahon, PC ;
Oh, J ;
Kelly, B ;
Krishnamachary, B ;
Pearson, M ;
Chan, DA ;
Giaccia, AJ ;
Semenza, GL .
MOLECULAR CELL, 2005, 17 (04) :503-512
[4]   HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia [J].
Berra, E ;
Benizri, E ;
Ginouvès, A ;
Volmat, V ;
Roux, D ;
Pouysségur, J .
EMBO JOURNAL, 2003, 22 (16) :4082-4090
[5]   HIF-1-dependent transcriptional activity is required for oxygen-mediated HIF-1α degradation [J].
Berra, E ;
Richard, DE ;
Gothié, E ;
Pouysségur, J .
FEBS LETTERS, 2001, 491 (1-2) :85-90
[6]   Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1 [J].
Bhattacharya, S ;
Michels, CL ;
Leung, MK ;
Arany, ZP ;
Kung, AL ;
Livingston, DM .
GENES & DEVELOPMENT, 1999, 13 (01) :64-75
[7]   A conserved family of prolyl-4-hydroxylases that modify HIF [J].
Bruick, RK ;
McKnight, SL .
SCIENCE, 2001, 294 (5545) :1337-1340
[8]   Oxygen sensing and molecular adaptation to hypoxia [J].
Bunn, HF ;
Poyton, RO .
PHYSIOLOGICAL REVIEWS, 1996, 76 (03) :839-885
[9]   Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein [J].
Cockman, ME ;
Masson, N ;
Mole, DR ;
Jaakkola, P ;
Chang, GW ;
Clifford, SC ;
Maher, ER ;
Pugh, CW ;
Ratcliffe, PJ ;
Maxwell, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (33) :25733-25741
[10]   The von Hippel Lindau/hypoxia-inducible factor (HIF) pathway regulates the transcription of the HIF-proline hydroxylase genes in response to low oxygen [J].
del Peso, L ;
Castellanos, MC ;
Temes, E ;
Martín-Puig, S ;
Cuevas, Y ;
Olmos, G ;
Landázuri, MO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (49) :48690-48695