TRANSFORMATION INVARIANT SPARSE CODING

被引:0
|
作者
Morup, Morten [1 ]
Schmidt, Mikkel N. [1 ]
机构
[1] Tech Univ Denmark, DTU Informat, Sect Cognit Syst, DK-2800 Lyngby, Denmark
来源
2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2011年
关键词
FEATURE-EXTRACTION; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse coding is a well established principle for unsupervised learning. Traditionally, features are extracted in sparse coding in specific locations, however, often we would prefer invariant representation. This paper introduces a general transformation invariant sparse coding (TISC) model. The model decomposes images into features invariant to location and general transformation by a set of specified operators as well as a sparse coding matrix indicating where and to what degree in the original image these features are present. The TISC model is in general overcomplete and we therefore invoke sparse coding to estimate its parameters. We demonstrate how the model can correctly identify components of non-trivial artificial as well as real image data. Thus, the model is capable of reducing feature redundancies in terms of pre-specified transformations improving the component identification.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Improving the sparse coding model via hybrid Gaussian priors
    Yang, Lijian
    Mi, Jianxun
    Li, Weisheng
    Wang, Guofen
    Xiao, Bin
    PATTERN RECOGNITION, 2025, 159
  • [42] Mixed Integer Programming For Sparse Coding: Application to Image Denoising
    Liu, Yuan
    Canu, Stephan
    Honeine, Paul
    Ruan, Su
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2019, 5 (03): : 354 - 365
  • [43] Image fusion based on shift invariant shearlet transform and stacked sparse autoencoder
    Wang, Peng-Fei
    Luo, Xiao-Qing
    Li, Xin-Yi
    Zhang, Zhan-Cheng
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2018, 12 (02) : 73 - 84
  • [44] Shift-Invariant Sparse Filtering for Bearing Weak Fault Signal Denoising
    Wang, Rui
    Ding, Xiaoxi
    He, Dong
    Li, Quangchang
    Li, Xin
    Tang, Jian
    Huang, Wenbin
    IEEE SENSORS JOURNAL, 2023, 23 (21) : 26096 - 26106
  • [45] Adaptive feature extraction using sparse coding for machinery fault diagnosis
    Liu, Haining
    Liu, Chengliang
    Huang, Yixiang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2011, 25 (02) : 558 - 574
  • [46] Fault Diagnosis of Rolling Bearing Based on Fisher Discrimination Sparse Coding
    Li, Chengliang
    Wang, Zhongsheng
    Ding, Chan
    PROCEEDINGS OF THE FIRST SYMPOSIUM ON AVIATION MAINTENANCE AND MANAGEMENT-VOL II, 2014, 297 : 387 - 394
  • [47] Discriminant Manifold Learning via Sparse Coding for Robust Feature Extraction
    Pang, Meng
    Wang, Binghui
    Cheung, Yiu-Ming
    Lin, Chuang
    IEEE ACCESS, 2017, 5 : 13978 - 13991
  • [48] Elastic net sparse coding-based space object recognition
    Jiang, Z. (jiangzg@buaa.edu.cn), 1600, Chinese Society of Astronautics (34): : 1129 - 1139
  • [49] Sparse Coding for Hyperspectral Images using Random Dictionary and Soft Thresholding
    Oguslu, Ender
    Iftekharuddin, Khan
    Li, Jiang
    VISUAL INFORMATION PROCESSING XXI, 2012, 8399
  • [50] Convolutional Sparse Coding Fast Approximation With Application to Seismic Reflectivity Estimation
    Pereg, Deborah
    Cohen, Israel
    Vassiliou, Anthony A.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60