Plasmonic Hot Electron Induced Photocurrent Response at MoS2-Metal Junctions

被引:99
作者
Hong, Tu [1 ]
Chamlagain, Bhim [2 ]
Hu, Shuren [3 ]
Weiss, Sharon M. [1 ,3 ]
Zhou, Zhixian [2 ]
Xu, Ya-Qiong [1 ,3 ]
机构
[1] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37212 USA
[2] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA
[3] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37212 USA
基金
美国国家科学基金会;
关键词
plasmonics; scanning photocurrent microscopy; MoS2; photovoltaic effect; photothermoelectric effect; polarization; FIELD-EFFECT TRANSISTORS; GRAPHENE; PHOTODETECTORS; PHOTOLUMINESCENCE; HETEROSTRUCTURES; TRANSITION; DEVICES;
D O I
10.1021/acsnano.5b01065
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigate the wavelength- and polarization-dependence of photocurrent signals generated at few-layer MoS2-metal junctions through spatially resolved photocurrent measurements. When incident photon energy is above the direct bandgap of few-layer MoS2, the maximum photocurrent response occurs for the light polarization direction parallel to the metal electrode edge, which can be attributed to photovoltaic effects. In contrast, if incident photon energy is below the direct bandgap of MoS2, the photocurrent response is maximized when the incident light is polarized in the direction perpendicular to the electrode edge, indicating different photocurrent generation mechanisms. Further studies show that this polarized photocurrent response can be interpreted in terms of the polarized absorption of light by the plasmonic metal electrode, its conversion into hot electron hole pairs, and subsequent injection into MoS2. These fundamental studies shed light on the knowledge of photocurrent generation mechanisms in metal semiconductor junctions, opening the door for engineering future two-dimensional materials based optoelectronics through surface plasmon resonances.
引用
收藏
页码:5357 / 5363
页数:7
相关论文
共 35 条
[1]  
[Anonymous], ARXIV14125977
[2]  
Baugher BWH, 2014, NAT NANOTECHNOL, V9, P262, DOI [10.1038/NNANO.2014.25, 10.1038/nnano.2014.25]
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[4]   Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films [J].
Britnell, L. ;
Ribeiro, R. M. ;
Eckmann, A. ;
Jalil, R. ;
Belle, B. D. ;
Mishchenko, A. ;
Kim, Y. -J. ;
Gorbachev, R. V. ;
Georgiou, T. ;
Morozov, S. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Casiraghi, C. ;
Castro Neto, A. H. ;
Novoselov, K. S. .
SCIENCE, 2013, 340 (6138) :1311-1314
[5]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/NNANO.2014.311, 10.1038/nnano.2014.311]
[6]   Large and Tunable Photothermoelectric Effect in Single-Layer MoS2 [J].
Buscema, Michele ;
Barkelid, Maria ;
Zwiller, Val ;
van der Zant, Herre S. J. ;
Steele, Gary A. ;
Castellanos-Gomez, Andres .
NANO LETTERS, 2013, 13 (02) :358-363
[7]   Mobility Improvement and Temperature Dependence in MoSe2 Field-Effect Transistors on Parylene-C Substrate [J].
Chamlagain, Bhim ;
Li, Qing ;
Ghimire, Nirmal Jeevi ;
Chuang, Hsun-Jen ;
Perera, Meeghage Madusanka ;
Tu, Honggen ;
Xu, Yong ;
Pan, Minghu ;
Xaio, Di ;
Yan, Jiaqiang ;
Mandrus, David ;
Zhou, Zhixian .
ACS NANO, 2014, 8 (05) :5079-5088
[8]   High Performance Multilayer MoS2 Transistors with Scandium Contacts [J].
Das, Saptarshi ;
Chen, Hong-Yan ;
Penumatcha, Ashish Verma ;
Appenzeller, Joerg .
NANO LETTERS, 2013, 13 (01) :100-105
[9]   Plasmon-Induced Doping of Graphene [J].
Fang, Zheyu ;
Wang, Yumin ;
Liu, Zheng ;
Schlather, Andrea ;
Ajayan, Pulickel M. ;
Koppens, Frank H. L. ;
Nordlander, Peter ;
Halas, Naomi J. .
ACS NANO, 2012, 6 (11) :10222-10228
[10]  
Furchi MM, 2014, NANO LETT, V14, P6165, DOI [10.1021/nl502339q, 10.1021/n1502339q]