To overcome the range limitation associated with electric vehicles (EVs), the emerging technology of dynamic wireless power transfer (DWPT) can be employed. Electrified road infrastructure and wirelessly charged vehicle constitute a complex dynamic system whose successful operation requires coordination between the two subsystems and a certain level of knowledge regarding the EV position and speed on the road. A comprehensive vehicular detection system (Dwrr-vps) operating on magnetic principle and intended for DWPT applications is proposed in this paper. The following functionalities are integrated into the DWPT-VDS: a vehicle detection mechanism, the measurement of the vehicle lateral misalignment, vehicle speed measurement, driver information system (DIS), as well as the wireless communication between a roadside power controller and the DIS. When integrated with a DWPT charging system, the DWPT-VDS allows some critical functions, such as correction of the lateral position of the vehicle by the driver, an extended range of full-power reception for a misaligned vehicle, as well as the smooth transition between adjacent pads. This paper presents a comprehensive study of different coil structures and algorithms for speed and misalignment estimation in a DWPT-VDS, along with their comparison. The objective is to maximize the misalignment detection range for a given size of test coils and provide a robust solution for vehicles with different ground clearances. A three-coil system for vehicle misalignment and speed detection is selected as part of a proof-of-concept design. Part of the system is embedded in the road, and the rest is mounted on a wirelessly charged electric bus. The implemented system has been successfully tested in an outdoor environment. A DIS visualizing speed and misalignment information is also developed and tested to help the driver align the vehicle with the road-embedded primary pads.