Novel silicon-tungsten oxide-carbon composite as advanced negative electrode for lithium-ion batteries

被引:9
作者
Kim, Hyun-seung [1 ,2 ]
Kim, Jongjung [1 ,2 ]
Lee, Jae Gil [1 ,2 ]
Ryu, Ji Heon [3 ]
Kim, Jaekwang [4 ]
Oh, Seung M. [1 ,2 ]
Yoon, Songhun [4 ]
机构
[1] Seoul Natl Univ, Chem & Biol Engn, Seoul 151744, South Korea
[2] Seoul Natl Univ, WCU Program Chem Convergence Energy & Environm C2, Seoul 151744, South Korea
[3] Korea Polytech Univ, Grad Sch Knowledge Based Technol & Energy, 2121 Jeongwang Dong, Siheung Si 429793, Gyeonggi Do, South Korea
[4] Chung Ang Univ, Sch Integrat Engn, 221 Heukseok Dong, Seoul 156756, South Korea
基金
新加坡国家研究基金会;
关键词
Alloying reaction; Negative electrode; Conversion reaction; Tungsten oxide; Chemical synthesis; SECONDARY BATTERIES; ANODES; CHEMISTRY; CHALLENGES; LITHIATION; NANOWIRE; FAILURE; POWDER; SIZE;
D O I
10.1016/j.ssi.2017.11.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A cheap Si powder byproduct from solar cell production was applied as a negative electrode for lithium-ion batteries. To improve the cycle and rate performances, the as-obtained Si powder was composited with tungsten oxide and coated with carbon, in sequence. After preparing the composite material, its electrochemical performance is evaluated, which exhibits a high reversible capacity of 975 mA h g(-1) with improved cycleability. Especially, the rate capability is significantly improved to 390 mA h g(-1) under 1000 mA g(-1) applied current. This advanced electrochemical performance is attributed to the matrix effect of the formed Li2O and W metal with carbon coating, as identified using ex-situ X-ray diffraction experiments, and associated with the low polarization resistance observed in the galvanostatic charge intermittent technique.
引用
收藏
页码:41 / 45
页数:5
相关论文
共 33 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (02) :1132-1140
[3]   Progress in electrical energy storage system: A critical review [J].
Chen, Haisheng ;
Cong, Thang Ngoc ;
Yang, Wei ;
Tan, Chunqing ;
Li, Yongliang ;
Ding, Yulong .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2009, 19 (03) :291-312
[4]  
Cheng K. H., 1980, Solid State Ionics, V1, P151, DOI 10.1016/0167-2738(80)90030-2
[5]   Improvement of cyclability of Si as anode for Li-ion batteries [J].
Ding, Ning ;
Xu, Jing ;
Yao, Yaxuan ;
Wegner, Gerhard ;
Lieberwirth, Ingo ;
Chen, Chunhua .
JOURNAL OF POWER SOURCES, 2009, 192 (02) :644-651
[6]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[7]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[8]   Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries [J].
Gu, Meng ;
Xiao, Xing-Cheng ;
Liu, Gao ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Liu, Jun ;
Browning, Nigel D. ;
Wang, Chong-Min .
SCIENTIFIC REPORTS, 2014, 4
[9]   SiOx-graphite as negative for high energy Li-ion batteries [J].
Guerfi, A. ;
Charest, P. ;
Dontigny, M. ;
Trottier, J. ;
Lagace, M. ;
Hovington, P. ;
Vijh, A. ;
Zaghib, K. .
JOURNAL OF POWER SOURCES, 2011, 196 (13) :5667-5673
[10]   Silicon/graphite composite electrodes for high-capacity anodes:: Influence of binder chemistry on cycling stability [J].
Hochgatterer, N. S. ;
Schweiger, M. R. ;
Koller, S. ;
Raimann, P. R. ;
Woehrle, T. ;
Wurm, C. ;
Winter, M. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (05) :A76-A80