Gaussian interaction profile kernels for predicting drug-target interaction

被引:740
作者
van Laarhoven, Twan [1 ]
Nabuurs, Sander B. [2 ]
Marchiori, Elena [1 ]
机构
[1] Radboud Univ Nijmegen, Dept Comp Sci, NL-6525 ED Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Med Ctr, Ctr Mol & Biomol Informat, NL-6525 ED Nijmegen, Netherlands
关键词
IDENTIFICATION; NETWORKS;
D O I
10.1093/bioinformatics/btr500
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of all drug-target pairs in current datasets are experimentally validated interactions. This motivates the need for developing computational methods that predict true interaction pairs with high accuracy. Results: We show that a simple machine learning method that uses the drug-target network as the only source of information is capable of predicting true interaction pairs with high accuracy. Specifically, we introduce interaction profiles of drugs (and of targets) in a network, which are binary vectors specifying the presence or absence of interaction with every target (drug) in that network. We define a kernel on these profiles, called the Gaussian Interaction Profile (GIP) kernel, and use a simple classifier, (kernel) Regularized Least Squares (RLS), for prediction drug-target interactions. We test comparatively the effectiveness of RLS with the GIP kernel on four drug-target interaction networks used in previous studies. The proposed algorithm achieves area under the precision-recall curve (AUPR) up to 92.7, significantly improving over results of state-of-the-art methods. Moreover, we show that using also kernels based on chemical and genomic information further increases accuracy, with a neat improvement on small datasets. These results substantiate the relevance of the network topology (in the form of interaction profiles) as source of information for predicting drug-target interactions.
引用
收藏
页码:3036 / 3043
页数:8
相关论文
共 38 条
[1]  
[Anonymous], 2004, P 21 INT C MACHINE L
[2]   Kernel methods for predicting protein-protein interactions [J].
Ben-Hur, A ;
Noble, WS .
BIOINFORMATICS, 2005, 21 :I38-I46
[3]   Supervised prediction of drug-target interactions using bipartite local models [J].
Bleakley, Kevin ;
Yamanishi, Yoshihiro .
BIOINFORMATICS, 2009, 25 (18) :2397-2403
[4]   Drug target identification using side-effect similarity [J].
Campillos, Monica ;
Kuhn, Michael ;
Gavin, Anne-Claude ;
Jensen, Lars Juhl ;
Bork, Peer .
SCIENCE, 2008, 321 (5886) :263-266
[5]   Structure-based maximal affinity model predicts small-molecule druggability [J].
Cheng, Alan C. ;
Coleman, Ryan G. ;
Smyth, Kathleen T. ;
Cao, Qing ;
Soulard, Patricia ;
Caffrey, Daniel R. ;
Salzberg, Anna C. ;
Huang, Enoch S. .
NATURE BIOTECHNOLOGY, 2007, 25 (01) :71-75
[6]  
Davis J., 2006, P 23 INT C MACH LEAR, P233, DOI [10.1145/1143844.1143874, DOI 10.1145/1143844.1143874]
[7]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874
[8]   SuperTarget and Matador:: resources for exploring drug-target relationships [J].
Guenther, Stefan ;
Kuhn, Michael ;
Dunkel, Mathias ;
Campillos, Monica ;
Senger, Christian ;
Petsalaki, Evangelia ;
Ahmed, Jessica ;
Urdiales, Eduardo Garcia ;
Gewiess, Andreas ;
Jensen, Lars Juhl ;
Schneider, Reinhard ;
Skoblo, Roman ;
Russell, Robert B. ;
Bourne, Philip E. ;
Bork, Peer ;
Preissner, Robert .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D919-D922
[9]   Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays [J].
Haggarty, SJ ;
Koeller, KM ;
Wong, JC ;
Butcher, RA ;
Schreiber, SL .
CHEMISTRY & BIOLOGY, 2003, 10 (05) :383-396
[10]   Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways [J].
Hattori, M ;
Okuno, Y ;
Goto, S ;
Kanehisa, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (39) :11853-11865