L2-spectral invariants and convergent sequences of finite graphs

被引:20
作者
Elek, Gabor [1 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Math Inst, H-1364 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
graph sequences; spectrum; von Neumann algebras; integrated density of states;
D O I
10.1016/j.jfa.2008.01.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the spectral theory of weakly convergent sequences of finite graphs, we prove the uniform existence of the integrated density of states for a large class of infinite graphs. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2667 / 2689
页数:23
相关论文
共 13 条
[1]  
Benjamini I., 2001, ELECT J PROBAB, V6
[2]  
BORGS C, 2006, P 38 ANN ACM S THEOR, P261
[3]   Approximating L2-invariants and the Atiyah conjecture [J].
Dodziuk, J ;
Linnell, P ;
Mathai, V ;
Schick, T ;
Yates, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (07) :839-873
[4]   THE COMBINATORIAL COST [J].
Elek, Gabor .
ENSEIGNEMENT MATHEMATIQUE, 2007, 53 (3-4) :225-235
[5]   The strong approximation conjecture holds for amenable groups [J].
Elek, Gabor .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 239 (01) :345-355
[6]   The lamplighter group as a group generated by a 2-state automaton, and its spectrum [J].
Grigorchuk, RI ;
Zuk, A .
GEOMETRIAE DEDICATA, 2001, 87 (1-3) :209-244
[7]   SOME REMARKS ON DISCRETE APERIODIC SCHRODINGER-OPERATORS [J].
HOF, A .
JOURNAL OF STATISTICAL PHYSICS, 1993, 72 (5-6) :1353-1374
[8]   NONCOMMUTATIVE GEOMETRY OF TILINGS AND GAP LABELING [J].
KELLENDONK, J .
REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (07) :1133-1180
[9]   Growth of self-similar graphs [J].
Krön, B .
JOURNAL OF GRAPH THEORY, 2004, 45 (03) :224-239
[10]  
LENZ D, 92006 MATH FORSCH OB