Disparity disambiguation by fusion of signal- and symbolic-level information

被引:2
作者
Ralli, Jarno [1 ]
Diaz, Javier [1 ]
Kalkan, Sinan [2 ]
Krueger, Norbert [3 ]
Ros, Eduardo [1 ]
机构
[1] Univ Granada, Dept Arquitectura & Tecnol Comp, Escuela Tecn Super Ingn Informat & Telecomun, Calle Periodista Daniel Saucedo Aranda S-N, E-18071 Granada, Spain
[2] Middle E Tech Univ, KOVAN Res Lab, Dept Comp Engn, TR-06531 Ankara, Turkey
[3] Univ So Denmark, Cognit Vis Lab, Maersk Mc Kinney Moller Inst, DK-5230 Odense M, Denmark
关键词
Disparity fusion; Feed-back loop; Disparity disambiguation; Low- and symbolic-level fusion; Signal-symbol loop; PHASE; MOTION;
D O I
10.1007/s00138-010-0266-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a method for resolving ambiguities in low-level disparity calculations in a stereo-vision scheme by using a recurrent mechanism that we call signal-symbol loop. Due to the local nature of low-level processing it is not always possible to estimate the correct disparity values produced at this level. Symbolic abstraction of the signal produces robust, high confidence, multimodal image features which can be used to interpret the scene more accurately and therefore disambiguate low-level interpretations by biasing the correct disparity. The fusion process is capable of producing more accurate dense disparity maps than the low- and symbolic-level algorithms can produce independently. Therefore we describe an efficient fusion scheme that allows symbolic- and low-level cues to complement each other, resulting in a more accurate and dense disparity representation of the scene.
引用
收藏
页码:65 / 77
页数:13
相关论文
共 27 条
[11]  
Kalkan S, 2008, VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, P214
[12]  
Krüger N, 2005, LECT NOTES COMPUT SC, V3704, P167, DOI 10.1007/11565123_17
[13]  
Kruger N., 2004, AISB Journal, V1, P417
[14]   Inference of segmented overlapping surfaces from binocular stereo [J].
Lee, MS ;
Medioni, G ;
Mordohai, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (06) :824-837
[15]  
Medioni G., 2000, COMPUTATIONAL FRAMEW
[16]   Stereo using monocular cues within the tensor voting framework [J].
Mordohai, P ;
Medioni, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (06) :968-982
[17]  
Pugeault N., 2006, P 5 IEEE COMP SOC WO
[18]   Bayesian algorithms for simultaneous structure from motion estimation of multiple independently moving objects [J].
Qian, G ;
Chellappa, R ;
Zheng, QF .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (01) :94-109
[19]   A method for sparse disparity densification using voting mask propagation [J].
Ralli, J. ;
Diaz, J. ;
Ros, E. .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2010, 21 (01) :67-74
[20]  
Ralli J., 2010, IEEE T IMAGE P UNPUB