Protection against autoimmunity in nonlymphopenic hosts by CD4+ CD25+ regulatory T cells is antigen-specific and requires IL-10 and TGF-β

被引:34
作者
Huang, XP
Zhu, JG
Yang, YP
机构
[1] Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Immunol, Durham, NC 27710 USA
关键词
D O I
10.4049/jimmunol.175.7.4283
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
CD4(+)CD25(+) regulatory T cells (T-Reg) play a critical role in the control of autoimmunity. However, little is known about how T-Reg suppress self-reactive T cells in vivo, thus limiting the development of T-Reg-based therapy for treating autoimmune diseases. This is in large part due to the dependency on a state of lymphopenia to demonstrate T-Reg-mediated suppression in vivo and the unknown Ag specificity of T-Reg in most experimental models. Using a nonlymphopenic model of autoimmune pneumonitis and T-Reg with known Ag specificity, in this study we demonstrated that these T-Reg can actively suppress activation of self-reactive T cells and protect mice from fatal autoimmune pneumonitis. The protection required T-Reg with the same Ag specificity as the self-reactive T cells and depended on IL-10 and TGF-beta. These results suggest that suppression of autoimmunity by T-Reg in vivo consists of multiple layers of regulation and advocate for a strategy involving Ag-specific T-Reg for treating organ-specific autoimmunity, because they do not cause generalized immune suppression.
引用
收藏
页码:4283 / 4291
页数:9
相关论文
共 53 条
[1]   CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells [J].
Adler, AJ ;
Marsh, DW ;
Yochum, GS ;
Guzzo, JL ;
Nigam, A ;
Nelson, WG ;
Pardoll, DM .
JOURNAL OF EXPERIMENTAL MEDICINE, 1998, 187 (10) :1555-1564
[2]   In vivo CD4+ T cell tolerance induction versus priming is independent of the rate and number of cell divisions [J].
Adler, AJ ;
Huang, CT ;
Yochum, GS ;
Marsh, DW ;
Pardoll, DM .
JOURNAL OF IMMUNOLOGY, 2000, 164 (02) :649-655
[3]   CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10 [J].
Annacker, O ;
Pimenta-Araujo, R ;
Burlen-Defranoux, O ;
Barbosa, TC ;
Cumano, A ;
Bandeira, A .
JOURNAL OF IMMUNOLOGY, 2001, 166 (05) :3008-3018
[4]   In vivo instruction of suppressor commitment in naive T cells [J].
Apostolou, I ;
von Boehmer, H .
JOURNAL OF EXPERIMENTAL MEDICINE, 2004, 199 (10) :1401-1408
[5]   Origin of regulatory T cells with known specificity for antigen [J].
Apostolou, I ;
Sarukhan, A ;
Klein, L ;
von Boehmer, H .
NATURE IMMUNOLOGY, 2002, 3 (08) :756-763
[6]   Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation [J].
Asano, M ;
Toda, M ;
Sakaguchi, N ;
Sakaguchi, S .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 184 (02) :387-396
[7]   An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation [J].
Asseman, C ;
Mauze, S ;
Leach, MW ;
Coffman, RL ;
Powrie, F .
JOURNAL OF EXPERIMENTAL MEDICINE, 1999, 190 (07) :995-1003
[8]   Human CD4+CD25+ regulatory T cells [J].
Baecher-Allan, C ;
Viglietta, V ;
Hafler, DA .
SEMINARS IN IMMUNOLOGY, 2004, 16 (02) :89-97
[9]   T cell regulation as a side effect of homeostasis and competition [J].
Barthlott, T ;
Kassiotis, G ;
Stockinger, B .
JOURNAL OF EXPERIMENTAL MEDICINE, 2003, 197 (04) :451-460
[10]   Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+25+ immunoregulatory T cells [J].
Bensinger, SJ ;
Bandeira, A ;
Jordan, MS ;
Caton, AJ ;
Laufer, TM .
JOURNAL OF EXPERIMENTAL MEDICINE, 2001, 194 (04) :427-438