共 50 条
Symmetry of solutions for a fractional p-Laplacian equation of Choquard type
被引:7
作者:
Phuong Le
[1
,2
]
机构:
[1] Ton Duc Thang Univ, Div Computat Math & Engn, Inst Computat Sci, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
关键词:
Choquard equations;
fractional p-Laplacian;
symmetry of solutions;
method of moving planes;
POSITIVE SOLUTIONS;
MAXIMUM-PRINCIPLES;
LIOUVILLE THEOREM;
ELLIPTIC PROBLEM;
CLASSIFICATION;
REGULARITY;
UNIQUENESS;
EXISTENCE;
STATE;
D O I:
10.1142/S0129167X20500263
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let 0 < s < 1, 0 < ( )alpha < n, p > 2, q > 1, r > 0 and u be a positive solution of the equation (-Delta)(p)(s)u = (1/vertical bar x vertical bar(n-alpha) * u(q)) u(r )in R-n. We prove that if u satisfies some decay assumption at infinity, then u must be radially symmetric and monotone decreasing about some point in R-n. Instead of using equivalent fractional systems, we exploit a generalized direct method of moving planes for fractional p-Laplacian equations with nonlocal nonlinearities. This new approach enables us to cover the full range 0 < alpha < n in our results.
引用
收藏
页数:14
相关论文
共 50 条