Enhanced Thermoelectric Performance in Black Phosphorus Nanotubes by Band Modulation through Tailoring Nanotube Chirality

被引:19
作者
Chen, Xin [1 ]
Duan, Shuai [1 ]
Yi, Wencai [1 ]
Singh, David J. [2 ,3 ]
Guo, Jiangang [4 ,5 ]
Liu, Xiaobing [1 ]
机构
[1] Qufu Normal Univ, Lab High Pressure Phys & Mat Sci HPPMS, Sch Phys & Phys Engn, Qufu 273100, Shandong, Peoples R China
[2] Univ Missouri, Dept Phys & Astron, Columbia, MO 66521 USA
[3] Univ Missouri, Dept Chem, Columbia, MO 65211 USA
[4] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[5] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
band structure; black phosphorus; first-principles calculation; nanomaterials; thermoelectrics; TOTAL-ENERGY CALCULATIONS; HIGH CARRIER MOBILITY; CARBON NANOTUBES; CONDUCTIVITY; EFFICIENCY;
D O I
10.1002/smll.202001820
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Black phosphorus (BP) has attracted great attention for applications in thermoelectric devices, owing to its unique in-plane anisotropic electrical and thermal properties. However, its limited conversion efficiency hinders practical application. Here, the thermoelectric properties of 1D BP nanotubes (BPNTs) with different tube chirality are investigated using first-principles calculations and Boltzmann transport theory. The results reveal that variation of crystallographic orientation has a distinct impact on band dispersions, which provides a wide tunability of electronic transport. It is shown that (1,1)-oriented BPNT structure can yield an order-of-magnitude enhanced thermoelectric figure of merit ZT at room temperature (as high as 1.0), compared with the bulk counterpart. The distinct enhancement is attributed to the favorable multiple band structures that lead to high carrier mobility of 2430 cm(2) V-1 s(-1). Further performance improvement can be realized by suitable doping, such as N-alloying, reaching an increase of room-temperature ZT by a factor of 3 over that of pristine BPNT. The work provides an applicable method to achieve band engineering design, and presents a new strategy of designing 1D BPNT that are promising candidates for flexible, eco-friendly, and high-performance thermoelectrics.
引用
收藏
页数:8
相关论文
共 57 条
[1]   Nanotubes from carbon [J].
Ajayan, PM .
CHEMICAL REVIEWS, 1999, 99 (07) :1787-1799
[2]   Foldable Thermoelectric Materials: Improvement of the Thermoelectric Performance of Directly Spun CNT Webs by Individual Control of Electrical and Thermal Conductivity [J].
An, Cheng Jin ;
Kang, Young Hun ;
Lee, A-Young ;
Jang, Kwang-Suk ;
Jeong, Youngjin ;
Cho, Song Yun .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (34) :22142-22150
[3]   Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties [J].
Avery, Azure D. ;
Zhou, Ben H. ;
Lee, Jounghee ;
Lee, Eui-Sup ;
Miller, Elisa M. ;
Ihly, Rachelle ;
Wesenberg, Devin ;
Mistry, Kevin S. ;
Guillot, Sarah L. ;
Zink, Barry L. ;
Kim, Yong-Hyun ;
Blackburn, Jeffrey L. ;
Ferguson, Andrew J. .
NATURE ENERGY, 2016, 1
[4]   Flexible thermoelectric materials and device optimization for wearable energy harvesting [J].
Bahk, Je-Hyeong ;
Fang, Haiyu ;
Yazawa, Kazuaki ;
Shakouri, Ali .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (40) :10362-10374
[5]   DEFORMATION POTENTIALS AND MOBILITIES IN NON-POLAR CRYSTALS [J].
BARDEEN, J ;
SHOCKLEY, W .
PHYSICAL REVIEW, 1950, 80 (01) :72-80
[6]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[7]   Charge carrier mobility in quasi-one-dimensional systems:: Application to a guanine stack [J].
Beleznay, FB ;
Bogár, F ;
Ladik, J .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (11) :5690-5695
[8]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[9]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[10]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171