Bayesian Inference of Quasi-Linear Radial Diffusion Parameters using Van Allen Probes

被引:11
作者
Sarma, Rakesh [1 ]
Chandorkar, Mandar [1 ]
Zhelavskaya, Irina [2 ,3 ]
Shprits, Yuri [2 ,3 ]
Drozdov, Alexander [4 ]
Camporeale, Enrico [1 ,5 ,6 ]
机构
[1] Ctr Wiskunde & Informat, Amsterdam, Netherlands
[2] GFZ German Res Ctr Geosci, Potsdam, Germany
[3] Univ Potsdam, Inst Phys & Astron, Potsdam, Germany
[4] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA
[5] Univ Colorado, CIRES, Boulder, CO 80309 USA
[6] NASA, Space Weather Predict Ctr, Boulder, CO USA
基金
欧盟地平线“2020”;
关键词
radial diffusion; magnetosphere; Bayesian inference; Van Allen radiation belt; RELATIVISTIC ELECTRONS; ACCELERATION; CHALLENGE; LOSSES;
D O I
10.1029/2019JA027618
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Van Allen radiation belts in the magnetosphere have been extensively studied using models based on radial diffusion theory, which is derived from a quasi-linear approach with prescribed inner and outer boundary conditions. The 1D diffusion model requires the knowledge of a diffusion coefficient and an electron loss timescale, which is typically parameterized in terms of various quantities such as the spatial (L) coordinate or a geomagnetic index (e.g., Kp). These terms are typically empirically derived, not directly measurable, and hence are not known precisely, due to the inherent nonlinearity of the process and the variable boundary conditions. In this work, we demonstrate a probabilistic approach by inferring the values of the diffusion and loss term parameters, along with their uncertainty, in a Bayesian framework, where identification is obtained using the Van Allen Probe measurements. Our results show that the probabilistic approach statistically improves the performance of the model, compared to the empirical parameterization employed in the literature. Key Points We present the first application of Bayesian parameter estimation to the problem of quasi-linear radial diffusion in the radiation belt The Bayesian approach allows the problem to be cast in probabilistic terms and for ensemble simulations to be run An improved accuracy is demonstrated when compared against standard deterministic models
引用
收藏
页数:15
相关论文
共 49 条
[1]   Three-dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm [J].
Albert, Jay M. ;
Meredith, Nigel P. ;
Horne, Richard B. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
[2]   Electric and magnetic radial diffusion coefficients using the Van Allen probes data [J].
Ali, Ashar F. ;
Malaspina, David M. ;
Elkington, Scot R. ;
Jaynes, Allison N. ;
Chan, Anthony A. ;
Wygant, John ;
Kletzing, Craig A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (10) :9586-9607
[3]  
[Anonymous], 2021, Bayesian Data Analysis
[4]   The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft [J].
Blake, J. B. ;
Carranza, P. A. ;
Claudepierre, S. G. ;
Clemmons, J. H. ;
Crain, W. R., Jr. ;
Dotan, Y. ;
Fennell, J. F. ;
Fuentes, F. H. ;
Galvan, R. M. ;
George, J. S. ;
Henderson, M. G. ;
Lalic, M. ;
Lin, A. Y. ;
Looper, M. D. ;
Mabry, D. J. ;
Mazur, J. E. ;
McCarthy, B. ;
Nguyen, C. Q. ;
O'Brien, T. P. ;
Perez, M. A. ;
Redding, M. T. ;
Roeder, J. L. ;
Salvaggio, D. J. ;
Sorensen, G. A. ;
Spence, H. E. ;
Yi, S. ;
Zakrzewski, M. P. .
SPACE SCIENCE REVIEWS, 2013, 179 (1-4) :383-421
[5]   Electron radiation belt data assimilation with an ensemble Kalman filter relying on the Salammbo code [J].
Bourdarie, S. A. ;
Maget, V. F. .
ANNALES GEOPHYSICAE, 2012, 30 (06) :929-943
[6]   Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm [J].
Brautigam, DH ;
Albert, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A1) :291-309
[7]  
Brooks S, 2011, CH CRC HANDB MOD STA, pXIX
[8]   The Challenge of Machine Learning in Space Weather: Nowcasting and Forecasting [J].
Camporeale, E. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2019, 17 (08) :1166-1207
[9]   On the Generation of Probabilistic Forecasts From Deterministic Models [J].
Camporeale, E. ;
Chu, X. ;
Agapitov, O. V. ;
Bortnik, J. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2019, 17 (03) :455-475
[10]   On the propagation of uncertainties in radiation belt simulations [J].
Camporeale, Enrico ;
Shprits, Yuri ;
Chandorkar, Mandar ;
Drozdov, Alexander ;
Wing, Simon .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2016, 14 (11) :982-992