Chaotic attractors of the conjugate Lorenz-type system

被引:45
作者
Yang, Qigui [1 ]
Chen, Guanrong [2 ]
Huang, Kuifei [3 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[3] Guangxi Normal Univ, Sch Math Sci, Guilin 541004, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2007年 / 17卷 / 11期
基金
中国国家自然科学基金;
关键词
chaos; conjugate Lorenz-type system; Hopf bifurcation; Lyapunov exponent; Lorenz system; Chen system; Lu system;
D O I
10.1142/S0218127407019792
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new conjugate Lorenz-type system is introduced in this paper. The system contains as special cases the conjugate Lorenz system, conjugate Chen system and conjugate Lu system. Chaotic dynamics of the system in the parametric space is numerically and thoroughly investigated. Meanwhile, a set of conditions for possible existence of chaos are derived, which provide some useful guidelines for searching chaos in numerical simulations. Furthermore, some basic dynamical properties such as Lyapunov exponents, bifurcations, routes to chaos, periodic windows, possible chaotic and periodic-window parameter regions and the compound structure of the system are demonstrated with various numerical examples.
引用
收藏
页码:3929 / 3949
页数:21
相关论文
共 36 条
[1]   Analysis and structure of a new chaotic system [J].
Banks, SP .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (08) :1571-1583
[2]   Lie algebras, structure of nonlinear systems and chaotic motion [J].
Banks, SP ;
McCaffrey, D .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (07) :1437-1462
[3]  
Barnett S., 1983, POLYNOMIALS LINEAR C
[4]   On the generalized Lorenz canonical form [J].
Celikovsky, S ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2005, 26 (05) :1271-1276
[5]   On a generalized Lorenz canonical form of chaotic systems [J].
Celikovsky, S ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1789-1812
[6]  
CELIKOVSKY S, 1994, KYBERNETIKA, V30, P403
[7]  
Celikovsky S., 2002, P 15 TRIENN WORLD C
[8]  
Celikovsky S., 1996, CONTROL SYSTEMS LINE
[9]  
Chen G., 1998, CHAOS ORDER METHODOL
[10]  
Chen G., 1999, CONTROLLING CHAOS BI