Perfect Fluid Spacetimes and Gradient Solitons

被引:20
作者
De, Uday Chand [1 ]
Mantica, Carlo Alberto [2 ,3 ]
Suh, Young Jin [4 ,5 ]
机构
[1] Univ Calcutta, Dept Pure Math, 35 Ballygaunge Circular Rd, Kolkata 700019, W Bengal, India
[2] Univ Milan, Phys Dept Aldo Pontremoli, Via Celoria 16, I-20133 Milan, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
[4] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
[5] Kyungpook Natl Univ, RIRCM, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
  Lorentzian manifolds; perfect fluid spacetime; GRW space-times; Ricci soliton; gradient Ricci soliton; A-Einstein soliton; gradient Schouten soliton; Killing vector field; RICCI SOLITONS; VECTOR-FIELDS; CURVATURE; MANIFOLDS;
D O I
10.2298/FIL2203829D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main object of this paper is to characterize the perfect fluid spacetimes if its metrics are Ricci solitons, gradient Ricci solitons, gradient A-Einstein solitons and gradient Schouten solitons.
引用
收藏
页码:829 / 842
页数:14
相关论文
共 41 条
[1]  
Alias L., 1995, Geometry and Topology of Submanifolds VII, P67
[2]   UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES [J].
ALIAS, LJ ;
ROMERO, A ;
SANCHEZ, M .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) :71-84
[3]  
[Anonymous], 1999, MATH APPL
[4]  
[Anonymous], 2001, SOOCHOW J MATH
[5]   On gradient Ricci solitons conformal to a pseudo-Euclidean space [J].
Barbosa, Ezequiel ;
Pina, Romildo ;
Tenenblat, Keti .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 200 (01) :213-224
[6]   Ricci solitons on Lorentzian manifolds with large isometry groups [J].
Batat, W. ;
Brozos-Vazquez, M. ;
Garcia-Rio, E. ;
Gavino-Fernandez, S. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :1219-1227
[7]   ON GRADIENT eta-EINSTEIN SOLITONS [J].
Blaga, A. M. .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (02) :229-237
[8]   SOLITONS AND GEOMETRICAL STRUCTURES IN A PERFECT FLUID SPACETIME [J].
Blaga, Adara M. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (01) :41-53
[9]   VECTOR FIELDS AND RICCI CURVATURE [J].
BOCHNER, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (09) :776-797
[10]   THREE-DIMENSIONAL LORENTZIAN HOMOGENEOUS RICCI SOLITONS [J].
Brozos-Vazquez, M. ;
Calvaruso, G. ;
Garcia-Rio, E. ;
Gavino-Fernandez, S. .
ISRAEL JOURNAL OF MATHEMATICS, 2012, 188 (01) :385-403