Thermostatistics of the multi-dimensional q-deformed fermionic Newton oscillators

被引:15
作者
Algin, Abdullah [1 ]
Arslan, Emine [2 ]
机构
[1] Eskisehir Osmangazi Univ, Dept Phys, TR-26480 Eskisehir, Meselik, Turkey
[2] Eskisehir Osmangazi Univ, Grad Sch Sci, TR-26480 Meselik, Eskisehir, Turkey
关键词
deformed fermions; quantum groups; thermostatistics;
D O I
10.1016/j.physleta.2007.12.050
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The algebraic and representative properties of the multi-dimensional q-deformed fermionic Newton oscillator algebra are discussed. This algebra is covariant under the undeformed group U(n). The high- and low-temperature thermostatistical properties of a gas of the multi-dimensional q-deformed fermionic Newton oscillators are obtained. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2767 / 2773
页数:7
相关论文
共 62 条
[1]   A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics [J].
Abe, S .
PHYSICS LETTERS A, 1997, 224 (06) :326-330
[2]   Quantum group invariant fermionic gases:: GLp,q(2) and SUp/q(2) invariances [J].
Algin, A ;
Arik, M .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 330 (3-4) :442-450
[3]   High temperature behavior of a two-parameter deformed quantum group fermion gas [J].
Algin, A ;
Arik, M ;
Arikan, AS .
PHYSICAL REVIEW E, 2002, 65 (02)
[4]   Thermodynamics of a two-parameter deformed quantum group boson gas [J].
Algin, A .
PHYSICS LETTERS A, 2002, 292 (4-5) :251-255
[5]   Multi-parameter deformed fermionic oscillators [J].
Algin, A ;
Arik, M ;
Arikan, AS .
EUROPEAN PHYSICAL JOURNAL C, 2002, 25 (03) :487-491
[6]   q-deformed supersymmetric Newton oscillators [J].
Algin, A ;
Arik, M .
EUROPEAN PHYSICAL JOURNAL C, 2001, 19 (03) :583-586
[7]   THERMAL FIELD-THEORY AND INFINITE STATISTICS [J].
ALTHERR, T ;
GRANDOU, T .
NUCLEAR PHYSICS B, 1993, 402 (1-2) :195-216
[8]   INTRODUCTION TO THERMAL FIELD-THEORY [J].
ALTHERR, T .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (32) :5605-5628
[9]   Two-particle correlations from the q-boson viewpoint [J].
Anchishkin, DV ;
Gavrilik, AM ;
Iorgov, NZ .
EUROPEAN PHYSICAL JOURNAL A, 2000, 7 (02) :229-238
[10]   Quantum algebraic structures compatible with the harmonic oscillator Newton equation [J].
Arik, M ;
Atakishiyev, NM ;
Wolf, KB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (33) :L371-L376