Direction-dependent turning leads to anisotropic diffusion and persistence

被引:6
作者
Loy, N. [1 ]
Hillen, T. [2 ]
Painter, K. J. [3 ]
机构
[1] Politecn Torino, Dept Math Sci GL Lagrange, Cso Duca Abruzzi 24, Turin, Italy
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB, Canada
[3] Politecn Torino, Interuniv Dept Reg & Urban Studies & Planning, Viale Pier Andrea Mattioli 39, Turin, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
Cell migration; Boltzmann equation; persistence; direction-dependent turning rate; macroscopic limits; CELL-MIGRATION; BOLTZMANN-EQUATION; MODELS; CHEMOTAXIS; INVASION; LIMIT; DYNAMICS; DRIVEN;
D O I
10.1017/S0956792521000206
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Cells and organisms follow aligned structures in their environment, a process that can generate persistent migration paths. Kinetic transport equations are a popular modelling tool for describing biological movements at the mesoscopic level, yet their formulations usually assume a constant turning rate. Here we relax this simplification, extending to include a turning rate that varies according to the anisotropy of a heterogeneous environment. We extend known methods of parabolic and hyperbolic scaling and apply the results to cell movement on micropatterned domains. We show that inclusion of orientation dependence in the turning rate can lead to persistence of motion in an otherwise fully symmetric environment and generate enhanced diffusion in structured domains.
引用
收藏
页码:729 / 765
页数:37
相关论文
共 56 条
[1]   CHEMOTAXIS IN BACTERIA [J].
ADLER, J .
SCIENCE, 1966, 153 (3737) :708-&
[2]  
Alberts B., 2002, Mol Biol Cell, V4th, DOI [DOI 10.1201/9780203833445, DOI 10.1093/AOB/MCG023, 10.1201/9780203833445]
[3]   Equilibrium Solution to the Inelastic Boltzmann Equation Driven by a Particle Bath [J].
Bisi, Marzia ;
Carrillo, Jose A. ;
Lods, Bertrand .
JOURNAL OF STATISTICAL PHYSICS, 2008, 133 (05) :841-870
[4]   COMPLEX PATTERNS FORMED BY MOTILE CELLS OF ESCHERICHIA-COLI [J].
BUDRENE, EO ;
BERG, HC .
NATURE, 1991, 349 (6310) :630-633
[5]  
Buttenschoen A., 2021, NONLOCAL CELL ADHESI, DOI 10.1007/978-3-030-67111-2
[6]  
Cercignani C., 1987, BOLTZMANN EQUATION I
[7]   Kinetic models for chemotaxis and their drift-diffusion limits [J].
Chalub, FACC ;
Markowich, PA ;
Perthame, B ;
Schmeiser, C .
MONATSHEFTE FUR MATHEMATIK, 2004, 142 (1-2) :123-141
[9]   Mathematical models for cell migration: a non-local perspective [J].
Chen, Li ;
Painter, Kevin ;
Surulescu, Christina ;
Zhigun, Anna .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2020, 375 (1807)
[10]   Starvation Driven Diffusion as a Survival Strategy of Biological Organisms [J].
Cho, Eunjoo ;
Kim, Yong-Jung .
BULLETIN OF MATHEMATICAL BIOLOGY, 2013, 75 (05) :845-870