Auto-tuning for Model Predictive Controllers in Patients with Type 1 Diabetes

被引:0
作者
Sereno, Juan E. [1 ,2 ]
Rivadeneira, Pablo S. [1 ,2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Grp Control Proc, INTEC, Guemes 3450, RA-3000 Santa Fe, Argentina
[2] Univ Nacl Colombia, Fac Minas, Grp GITA, Cra 80 65-223, Medellin, Colombia
来源
2018 ARGENTINE CONFERENCE ON AUTOMATIC CONTROL (AADECA) | 2018年
关键词
Artificial Pancreas; Type; 1; Diabetes; Predictive Control; Auto-tining; Nelder-Mead Method; MPC; TRIALS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current proposals in glucose control using closed-loop systems have focused on maintaining blood glucose in a safe range, this against disturbances as meal intake or exercise. Due of its clinical performance, Model predictive control has been positioned as one of the most used control algorithms in the artificial pancreas. However, the personalization of this control strategy is an unresolved issue and little addressed in the literature. In this work, an auto-tuning methodology for MPC controller on type 1 diabetes patients is presented. The tuning is done through the nelder-mead method to find the controller's parameters that maximizes the time inside the normoglycemia range (70 - 180 mg/dl). It is chosen as variables to tune the weighting coefficient of the output and input, the predictive horizon, and the minimum and maximum values of the target zone. The results obtained show that auto-tuning methodology allow an increase up to 54.43% of time in normoglycemia, with an average increase up to 17.21%.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] ANTIBODIES TO PROINSULIN AND INSULIN AS PREDICTIVE MARKERS OF TYPE-1 DIABETES
    KUGLIN, B
    RJASANOWSKI, I
    BERTRAMS, J
    GRIES, FA
    KOLB, H
    MICHAELIS, D
    DIABETIC MEDICINE, 1990, 7 (04) : 310 - 314
  • [42] In-home nighttime predictive low glucose suspend experience in children and adults with type 1 diabetes
    Messer, Laurel H.
    Calhoun, Peter
    Buckingham, Bruce
    Wilson, Darrell M.
    Hramiak, Irene
    Ly, Trang T.
    Driscoll, Marsha
    Clinton, Paula
    Maahs, David M.
    PEDIATRIC DIABETES, 2017, 18 (05) : 332 - 339
  • [43] Management of Patients with Type 1 Diabetes in the Hospital
    Yogi-Morren, Divya
    Lansang, M. Cecilia
    CURRENT DIABETES REPORTS, 2014, 14 (02)
  • [44] The profile of autoimmunity in Type 1 diabetes patients
    Derrou, Sara
    El Guendouz, Faycal
    Benabdelfedil, Yousra
    Chakri, Imad
    Ouleghzal, Hassan
    Safi, Somaya
    ANNALS OF AFRICAN MEDICINE, 2021, 20 (01) : 19 - 23
  • [45] Predictive model and risk engine web application for surgical site infection risk in perioperative patients with type 2 diabetes
    Koshizaka, Masaya
    Ishibashi, Ryoichi
    Maeda, Yukari
    Ishikawa, Takahiro
    Maezawa, Yoshiro
    Takemoto, Minoru
    Yokote, Koutaro
    DIABETOLOGY INTERNATIONAL, 2022, 13 (04) : 657 - 664
  • [46] Predictive factors and risk model for depression in patients with type 2 diabetes mellitus: a comprehensive analysis of comorbidities and clinical indicators
    Duan, Chengzheng
    Luo, Cheng
    Jiang, Weifeng
    Xu, Hui
    Chen, Yexing
    Xu, Shiyu
    Zhang, Xiaofang
    Chen, Xiaoli
    He, Dongjuan
    FRONTIERS IN ENDOCRINOLOGY, 2025, 16
  • [47] The challenges of achieving postprandial glucose control using closed-loop systems in patients with type 1 diabetes
    Gingras, Veronique
    Taleb, Nadine
    Roy-Fleming, Amelie
    Legault, Laurent
    Rabasa-Lhoret, Remi
    DIABETES OBESITY & METABOLISM, 2018, 20 (02) : 245 - 256
  • [48] A physical activity-intensity driven glycemic model for type 1 diabetes
    Hobbs, Nicole
    Samadi, Sediqeh
    Rashid, Mudassir
    Shahidehpour, Andrew
    Askari, Mohammad Reza
    Park, Minsun
    Quinn, Laurie
    Cinar, Ali
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226
  • [49] Model Identification using Continuous Glucose Monitoring Data for Type 1 Diabetes
    Boiroux, Dimitri
    Hagdrup, Morten
    Mahmoudi, Zeinab
    Poulsen, Niels Kjolstad
    Madsen, Henrik
    Jorgensen, John Bagterp
    IFAC PAPERSONLINE, 2016, 49 (07): : 759 - 764
  • [50] Development of a coronary heart disease risk prediction model for type 1 diabetes: The Pittsburgh CHD in Type 1 Diabetes Risk Model
    Zgibor, Janice C.
    Ruppert, Kristine
    Orchard, Trevor J.
    Soedamah-Muthu, Sabita S.
    Fuller, John
    Chaturvedi, Nish
    Roberts, Mark S.
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2010, 88 (03) : 314 - 321