Auto-tuning for Model Predictive Controllers in Patients with Type 1 Diabetes

被引:0
作者
Sereno, Juan E. [1 ,2 ]
Rivadeneira, Pablo S. [1 ,2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Grp Control Proc, INTEC, Guemes 3450, RA-3000 Santa Fe, Argentina
[2] Univ Nacl Colombia, Fac Minas, Grp GITA, Cra 80 65-223, Medellin, Colombia
来源
2018 ARGENTINE CONFERENCE ON AUTOMATIC CONTROL (AADECA) | 2018年
关键词
Artificial Pancreas; Type; 1; Diabetes; Predictive Control; Auto-tining; Nelder-Mead Method; MPC; TRIALS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current proposals in glucose control using closed-loop systems have focused on maintaining blood glucose in a safe range, this against disturbances as meal intake or exercise. Due of its clinical performance, Model predictive control has been positioned as one of the most used control algorithms in the artificial pancreas. However, the personalization of this control strategy is an unresolved issue and little addressed in the literature. In this work, an auto-tuning methodology for MPC controller on type 1 diabetes patients is presented. The tuning is done through the nelder-mead method to find the controller's parameters that maximizes the time inside the normoglycemia range (70 - 180 mg/dl). It is chosen as variables to tune the weighting coefficient of the output and input, the predictive horizon, and the minimum and maximum values of the target zone. The results obtained show that auto-tuning methodology allow an increase up to 54.43% of time in normoglycemia, with an average increase up to 17.21%.
引用
收藏
页数:6
相关论文
共 13 条
[1]   A stable MPC with zone control [J].
Gonzalez, Alejandro H. ;
Odloak, Darci .
JOURNAL OF PROCESS CONTROL, 2009, 19 (01) :110-122
[2]  
Grosman B., 2010, J DIABETES SCI TECHN, V4, P951
[3]  
Hovorka R., 2015, DIABETES TECHNOLOGY, V17
[4]  
Hoyos J. D., 2018, P 2018 WORLD C COMP
[5]   Safety of Outpatient Closed-Loop Control: First Randomized Crossover Trials of a Wearable Artificial Pancreas [J].
Kovatchev, Boris P. ;
Renard, Eric ;
Cobelli, Claudio ;
Zisser, Howard C. ;
Keith-Hynes, Patrick ;
Anderson, Stacey M. ;
Brown, Sue A. ;
Chernavvsky, Daniel R. ;
Breton, Marc D. ;
Mize, Lloyd B. ;
Farret, Anne ;
Place, Jerome ;
Bruttomesso, Daniela ;
Del Favero, Simone ;
Boscari, Federico ;
Galasso, Silvia ;
Avogaro, Angelo ;
Magni, Lalo ;
Di Palma, Federico ;
Toffanin, Chiara ;
Messori, Mirko ;
Dassau, Eyal ;
Doyle, Francis J., III .
DIABETES CARE, 2014, 37 (07) :1789-1796
[6]   Individualized Model Predictive Control for the Artificial Pancreas IN SILICO EVALUATION OF CLOSED-LOOP GLUCOSE CONTROL [J].
Messori, Mirko ;
Incremona, Gian Paolo ;
Cobelli, Claudio ;
Magni, Lalo .
IEEE CONTROL SYSTEMS MAGAZINE, 2018, 38 (01) :86-104
[7]   A SIMPLEX-METHOD FOR FUNCTION MINIMIZATION [J].
NELDER, JA ;
MEAD, R .
COMPUTER JOURNAL, 1965, 7 (04) :308-313
[8]  
Perrasse A. V., 2006, REV PANAM SALUD PUBL, V20, P2001
[9]   Randomized Crossover Comparison of Personalized MPC and PID Control Algorithms for the Artificial Pancreas [J].
Pinsker, Jordan E. ;
Lee, Joon Bok ;
Dassau, Eyal ;
Seborg, Dale E. ;
Bradley, Paige K. ;
Gondhalekar, Ravi ;
Bevier, Wendy C. ;
Huyett, Lauren ;
Zisser, Howard C. ;
Doyle, Francis J., III .
DIABETES CARE, 2016, 39 (07) :1135-1142
[10]   MPC with State Window Target Control in Linear Impulsive Systems [J].
Rivadeneira, Pablo S. ;
Ferramosca, Antonio ;
Gonzalez, Alejandro H. .
IFAC PAPERSONLINE, 2015, 48 (23) :507-512