Approximating the maximum vertex/edge weighted clique using local search

被引:62
作者
Pullan, Wayne [1 ]
机构
[1] Griffith Univ, Sch Informat & Commun Technol, Gold Coast, Qld, Australia
关键词
maximum weighted clique; local search;
D O I
10.1007/s10732-007-9026-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper extends the recently introduced Phased Local Search (PLS) algorithm to more difficult maximum clique problems and also adapts the algorithm to handle maximum vertex/edge weighted clique instances. PLS is a stochastic reactive dynamic local search algorithm that interleaves sub-algorithms which alternate between sequences of iterative improvement, during which suitable vertices are added to the current sub-graph, and plateau search, where vertices of the current sub-graph are swapped with vertices not contained in the current sub-graph. These sub-algorithms differ in firstly their vertex selection techniques in that selection can be solely based on randomly selecting a vertex, randomly selecting within highest vertex degree, or random selecting within vertex penalties that are dynamically adjusted during the search. Secondly, the perturbation mechanism used to overcome search stagnation differs between the sub-algorithms. PLS has no problem instance dependent parameters and achieves state-of-the-art performance for maximum clique and maximum vertex/edge weighted clique problems over a large range of the commonly used DIMACS benchmark instances.
引用
收藏
页码:117 / 134
页数:18
相关论文
共 16 条