Weakly-Supervised Semantic Segmentation Network With Iterative dCRF

被引:2
|
作者
Li, Yujie [1 ]
Sun, Jiaxing [1 ]
Li, Yun [1 ]
机构
[1] Yangzhou Univ, Sch Informat Engn, Yangzhou 225012, Jiangsu, Peoples R China
关键词
Semantics; Cams; Image segmentation; Convolution; Annotations; Feature extraction; Training; Weakly-supervised; semantic segmentation; image-level annotations;
D O I
10.1109/TITS.2022.3141107
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This Autonomous driving methods driven by big data are becoming more and more perfect, but the cost of existing data labeling is too high, so how to reduce or even not label data has attracted more and more attention. Semantic segmentation networks supervised by image-level annotations are all trained using pseudo-labels. Most methods use image classification networks to generate class activation maps (CAMs) and start with CAMs to diffuse features to other parts of the target to obtain pseudo-labels. However, due to its weak supervision information, it is difficult for the existing methods to obtain better results. Therefore, we propose a weakly-supervised semantic segmentation network with iterative dCRF based on graph convolution. Specifically, we use ResNet to generate CAMs and node features and then use graph convolution for feature propagation and merge the low-level and high-level semantic information of the image. Then execute dCRF in an iterative manner, and finally obtain refined pseudo-labels. On the PASCAL VOC 2012 data set, our model achieves an mIoU of 63.5%, which is 0.3% higher than the graph convolutional network method.
引用
收藏
页码:25419 / 25426
页数:8
相关论文
共 50 条
  • [1] Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning
    Wang, Xiang
    Liu, Sifei
    Ma, Huimin
    Yang, Ming-Hsuan
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (06) : 1736 - 1749
  • [2] Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning
    Xiang Wang
    Sifei Liu
    Huimin Ma
    Ming-Hsuan Yang
    International Journal of Computer Vision, 2020, 128 : 1736 - 1749
  • [3] CSENet: Cascade semantic erasing network for weakly-supervised semantic segmentation
    Liu, Jiahui
    Yu, Changqian
    Yang, Beibei
    Gao, Changxin
    Sang, Nong
    NEUROCOMPUTING, 2021, 453 : 885 - 895
  • [4] A Weakly-Supervised Approach for Semantic Segmentation
    Feng, Yanqing
    Wang, Lunwen
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 2311 - 2314
  • [5] Saliency Background Guided Network for Weakly-Supervised Semantic Segmentation
    Bai X.
    Li W.
    Wang W.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (09): : 824 - 835
  • [6] Global Consistency Enhancement Network for Weakly-Supervised Semantic Segmentation
    Jiang, Le
    Yang, Xinhao
    Ma, Liyan
    Li, Zhenglin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 53 - 65
  • [7] Deep graph cut network for weakly-supervised semantic segmentation
    Feng, Jiapei
    Wang, Xinggang
    Liu, Wenyu
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (03)
  • [8] Deep graph cut network for weakly-supervised semantic segmentation
    Jiapei FENG
    Xinggang WANG
    Wenyu LIU
    ScienceChina(InformationSciences), 2021, 64 (03) : 57 - 68
  • [9] Deep graph cut network for weakly-supervised semantic segmentation
    Jiapei Feng
    Xinggang Wang
    Wenyu Liu
    Science China Information Sciences, 2021, 64
  • [10] Token Contrast for Weakly-Supervised Semantic Segmentation
    Ru, Lixiang
    Zheng, Hehang
    Zhan, Yibing
    Du, Bo
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3093 - 3102