On the well-posedness and general decay results of Moore-Gibson-Thompson equation with memory

被引:4
作者
Zhang, Hui [1 ]
机构
[1] Shanghai Inst Technol, Sch Sci, Shanghai 201418, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 06期
关键词
Moore-Gibson-Thompson equation; Well-posedness; General decay; Fourier transform;
D O I
10.1007/s00033-022-01873-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the well-posedness and stability of the solution to Cauchy problem of Moore-Gibson-Thompson equation (MGT for short) with a type-II memory term. First, by applying semigroup method, we show that the Cauchy problem is well-posed under the basic assumptions imposed on the relaxation function g(t) and physical parameters. Then, under the condition alpha beta - tau gamma - alpha integral(infinity)(0) g(s)ds > 0, we establish an estimate of the Fourier image of energy norm, by building some appropriate Lyapunov functionals in Fourier space. Combining Plancherel's theorem and some integral inequalities, we show that the L-2-norm of the energy and solution of the Cauchy problem decay polynomially.
引用
收藏
页数:18
相关论文
共 20 条
[1]   Moore-Gibson-Thompson equation with memory in a history framework: a semigroup approach [J].
Alves, M. O. ;
Caixeta, A. H. ;
Jorge Silva, M. A. ;
Rodrigues, J. H. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04)
[2]   DECAY RATES FOR THE MOORE-GIBSON-THOMPSON EQUATION WITH MEMORY [J].
Bounadja, Hizia ;
Houari, Belkacem Said .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (03) :431-460
[3]   ON LONG TIME BEHAVIOR OF MOORE-GIBSON-THOMPSON EQUATION WITH MOLECULAR RELAXATION [J].
Caixeta, Arthur Henrique ;
Lasiecka, Irena ;
Domingos Cavalcanti, Valeria Neves .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2016, 5 (04) :661-676
[4]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[5]   A note on the Moore-Gibson-Thompson equation with memory of type II [J].
Dell'Oro, Filippo ;
Lasiecka, Irena ;
Pata, Vittorino .
JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (04) :1251-1268
[6]   The Moore-Gibson-Thompson equation with memory in the critical case [J].
Dell'Oro, Filippo ;
Lasiecka, Irena ;
Pata, Vittorino .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (07) :4188-4222
[7]  
Jordan P., 2008, The Journal of the Acoustical Society of America, V124, P2491, DOI [10.1121/1.4782790, DOI 10.1121/1.4782790]
[8]   SECOND-SOUND PHENOMENA IN INVISCID, THERMALLY RELAXING GASES [J].
Jordan, Pedro M. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (07) :2189-2205
[9]  
Kaltenbacher Barbara, 2011, Control and Cybernetics, V40, P971
[10]   WELL-POSEDNESS AND EXPONENTIAL DECAY OF THE ENERGY IN THE NONLINEAR JORDAN-MOORE-GIBSON-THOMPSON EQUATION ARISING IN HIGH INTENSITY ULTRASOUND [J].
Kaltenbacher, Barbara ;
Lasiecka, Irena ;
Pospieszalska, Maria K. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (11)