Geodesics and submanifold structures in conformal geometry

被引:2
作者
Belgun, Florin [1 ,2 ]
机构
[1] Univ Hamburg, Fachbereich Math, D-20146 Hamburg, Germany
[2] Acad Romana, Inst Matemat, RO-014700 Bucharest, Romania
关键词
Conformal structure; Laplace structure; Mobius structure; Schouten-Weyl tensor; Fundamental form; Geodesic; SUB-MANIFOLDS; MOBIUS SPACE; CURVES; S-1;
D O I
10.1016/j.geomphys.2015.01.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A conformal structure on a manifold M-n induces natural second order conformally invariant operators, called Mobius and Laplace structures, acting on specific weight bundles of M, provided that n >= 3. By extending the notions of Mobius and Laplace structures to the case of surfaces and curves, we develop here the theory of extrinsic conformal geometry for submanifolds, find tensorial invariants of a conformal embedding, and use these invariants to characterize various notions of geodesic submanifolds. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:172 / 191
页数:20
相关论文
共 18 条
[1]  
ap A. C., 2000, HOKKAIDO MATH J, V29, P453
[2]   CONFORMAL CIRCLES AND PARAMETRIZATIONS OF CURVES IN CONFORMAL MANIFOLDS [J].
BAILEY, TN ;
EASTWOOD, MG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (01) :215-221
[3]  
Belgun F, 2011, ASIAN J MATH, V15, P499
[4]  
Burstall F.E., ARXIV10065700
[5]  
Calderbank DMJ, 1998, J REINE ANGEW MATH, V504, P37
[6]  
Cap A, 2004, TRANSFORM GROUPS, V9, P143
[7]  
FERRAND J, 1982, CR ACAD SCI I-MATH, V294, P629
[8]   CONFORMAL GEODESICS IN GENERAL-RELATIVITY [J].
FRIEDRICH, H ;
SCHMIDT, BG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 414 (1846) :171-195
[9]  
Gauduchon P, 1995, J REINE ANGEW MATH, V469, P1
[10]   Diffeomorphisms on S1, projective structures and integrable systems [J].
Guha, P .
ANZIAM JOURNAL, 2002, 44 :169-180