An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion

被引:31
作者
Bourguignon, Marcelo [1 ]
Weiss, Christian H. [2 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Estatat, Natal, RN, Brazil
[2] Helmut Schmidt Univ, Dept Math & Stat, D-22008 Hamburg, Germany
关键词
INAR(1) process; Bernoulli distribution; Geometric distribution; Integer-valued time series; Binomial thinning; Negative binomial thinning; SELF-DECOMPOSABILITY; INNOVATIONS;
D O I
10.1007/s11749-017-0536-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a novel first-order nonnegative integer-valued autoregressive model for stationary count data processes with Bernoulli-geometric marginals based on a new type of generalized thinning operator. It can be used for modeling time series of counts with equidispersion, underdispersion and overdispersion. The main properties of the model are derived, such as probability generating function, moments, transition probabilities and zero probability. The maximum likelihood method is used for estimating the model parameters. The proposed model is fitted to time series of counts of iceberg orders and of cases of family violence illustrating its capabilities in challenging cases of overdispersed and equidispersed count data.
引用
收藏
页码:847 / 868
页数:22
相关论文
共 27 条
  • [1] Al-Osh M. A., 1987, Journal of Time Series Analysis, V8, P261, DOI [10.1111/j.1467-9892.1987.tb00438.x, DOI 10.1111/JTSA.1987.8.ISSUE-3]
  • [2] [Anonymous], 2016, A Language and Environment for Statistical Computing
  • [3] A first-passage time random walk distribution with five transition probabilities: a generalization of the shifted inverse trinomial
    Aoyama, Kazuki
    Shimizu, Kunio
    Ong, S. H.
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2008, 60 (01) : 1 - 20
  • [4] Zero truncated Poisson integer-valued AR(1) model
    Bakouch, Hassan S.
    Ristic, Miroslav M.
    [J]. METRIKA, 2010, 72 (02) : 265 - 280
  • [5] A Poisson INAR(1) process with a seasonal structure
    Bourguignon, Marcelo
    Vasconcellos, Klaus L. P.
    Reisen, Valderio A.
    Ispany, Marton
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (02) : 373 - 387
  • [6] Du J.-G., 1991, Journal of Time Series Analysis, V12, P129, DOI 10.1111/j.1467-9892.1991.tb00073.x
  • [7] Feller W., 1968, INTRO PROBABILITY TH
  • [8] Under-reported data analysis with INAR-hidden Markov chains
    Fernandez-Fontelo, Amanda
    Cabana, Alejandra
    Puig, Pedro
    Morina, David
    [J]. STATISTICS IN MEDICINE, 2016, 35 (26) : 4875 - 4890
  • [9] Non-Gaussian conditional linear AR(1) models
    Grunwald, GK
    Hyndman, RJ
    Tedesco, L
    Tweedie, RL
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2000, 42 (04) : 479 - 495
  • [10] TIME-SERIES MODELS FOR COUNT OR QUALITATIVE OBSERVATIONS
    HARVEY, AC
    FERNANDES, C
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1989, 7 (04) : 407 - 417