New methods to define heavy-tailed distributions with applications to insurance data

被引:48
作者
Ahmad, Zubair [1 ]
Mahmoudi, Eisa [1 ]
Hamedani, G. G. [2 ]
Kharazmi, Omid [3 ]
机构
[1] Yazd Univ, Dept Stat, POB 89175-741, Yazd, Iran
[2] Marquette Univ, Dept Math & Stat Sci, Milwaukee, WI 53233 USA
[3] Vali E Asr Univ Rafsanjan, Dept Stat, Fac Sci, Rafsanjan, Iran
来源
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE | 2020年 / 14卷 / 01期
关键词
Weibull distribution; heavy-tailed distributions; characterizations; Monte Carlo simulation; actuarial measures; medical care insurance data; vehicle insurance data; Bayesian estimation; FITTING INSURANCE; FINITE MIXTURES; FAMILY;
D O I
10.1080/16583655.2020.1741942
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Heavy-tailed distributions play an important role in modelling data in actuarial and financial sciences. In this article, nine new methods are suggested to define new distributions suitable for modelling data with an heavy right tail. For illustrative purposes, a special sub-model is considered in detail. Maximum likelihood estimators of the model parameters are obtained and a Monte Carlo simulation study is carried out to assess the behaviour of the estimators. Furthermore, some actuarial measures are calculated. A simulation study based on these actuarial measures is done. The usefulness of the proposed model is proved empirically by means of two real data sets. Finally, Bayesian analysis and performance of Gibbs sampling for the data sets are also carried out.
引用
收藏
页码:359 / 382
页数:24
相关论文
共 33 条
  • [1] Modeling loss data using composite models
    Abu Bakar, S. A.
    Hamzah, N. A.
    Maghsoudi, M.
    Nadarajah, S.
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2015, 61 : 146 - 154
  • [2] Skewed distributions in finance and actuarial science: a review
    Adcock, Christopher
    Eling, Martin
    Loperfido, Nicola
    [J]. EUROPEAN JOURNAL OF FINANCE, 2015, 21 (13-14) : 1253 - 1281
  • [3] Recent Developments in Distribution Theory: A Brief Survey and Some New Generalized Classes of distributions
    Ahmad, Zubair
    Hamedani, G. G.
    Butt, Nadeem Shafique
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2019, 15 (01) : 87 - 110
  • [4] A new method for generating families of continuous distributions
    Alzaatreh A.
    Lee C.
    Famoye F.
    [J]. METRON, 2013, 71 (1) : 63 - 79
  • [5] Artzner P., 1999, N. Am. Actuar. J., V3, P11, DOI DOI 10.1080/10920277.1999.10595795
  • [6] Azzalini A.T., 2003, J INCOME DISTRIBUTIO, V11, P12
  • [7] Bagnato L, 2013, COMPUTATION STAT, V28, P1571, DOI 10.1007/s00180-012-0367-4
  • [8] Beirlant J., 2001, ASTIN BULLITIN, V31, P37, DOI DOI 10.2143/AST.31.1.993
  • [9] Skew mixture models for loss distributions: A Bayesian approach
    Bernardi, Mauro
    Maruotti, Antonello
    Petrella, Lea
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2012, 51 (03) : 617 - 623
  • [10] On generalized log-Moyal distribution: A new heavy tailed size distribution
    Bhati, Deepesh
    Ravi, Sreenivasan
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2018, 79 : 247 - 259