Low-Coordinated Co-N-C on Oxygenated Graphene for Efficient Electrocatalytic H2O2 Production

被引:133
|
作者
Gong, Haisheng [1 ,2 ]
Wei, Zengxi [3 ,4 ]
Gong, Zhichao [1 ,2 ]
Liu, Jingjing [1 ,2 ]
Ye, Gonglan [1 ,2 ]
Yan, Minmin [1 ,2 ]
Dong, Juncai [5 ]
Allen, Christopher [6 ,7 ]
Liu, Jianbin [1 ,2 ]
Huang, Kang [1 ,2 ]
Liu, Rui [1 ,2 ]
He, Guanchao [1 ,2 ]
Zhao, Shuangliang [3 ,4 ]
Fei, Huilong [1 ,2 ]
机构
[1] Hunan Univ, Adv Catalyt Engn Res Ctr, Minist Educ, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China
[3] Guangxi Univ, Guangxi Key Lab Petrochem Resource Proc & Proc In, Nanning 530004, Peoples R China
[4] Guangxi Univ, Sch Chem & Chem Engn, Nanning 530004, Peoples R China
[5] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Fac, Beijing 100049, Peoples R China
[6] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[7] Diamond Lightsource Ltd, Electron Phys Sci Imaging Ctr, Oxford OX11 0DE, England
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
electrochemical H; O-2; (2) production; electronic structure; epoxide groups; low coordination; microwave synthesis; single-atom catalysts; RAY-ABSORPTION SPECTROSCOPY; HYDROGEN-PEROXIDE; ELECTROCHEMICAL SYNTHESIS; REDUCTION; WATER; SELECTIVITY; OXIDATION; CATALYSTS; TRENDS; SITES;
D O I
10.1002/adfm.202106886
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical H2O2 production through the 2-electron oxygen reduction reaction (ORR) is a promising alternative to the energy-intensive anthraquinone process. Herein, by simultaneously regulating the coordination number of the atomically dispersed cobalt sites and the nearby oxygen functional groups via a one-step microwave thermal shock, a highly selective and active Co-N-C electrocatalyst for H2O2 electrosynthesis that exhibits a high H2O2 selectivity (91.3%), outstanding mass activity (44.4 A g(-1) at 0.65 V), and large kinetic current density (11.3 mA cm(-2) at 0.65 V) in 0.1 m KOH is obtained. In strong contrast to the typical Co-N-4 moieties for the 4-electron ORR, the present Co-N-C catalyst possesses a low-coordinated Co-N-2 configuration and abundant epoxide groups, which work in synergy for promoting the 2-electron ORR, as demonstrated by a series of control experiments and theoretical simulations. This study may provide an effective avenue to modulating the composition and structure of electrocatalysts at the atomic scale, leading to the development of new electrocatalysts with unprecedented reactivity.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Heterogeneous molecular Co-N-C catalysts for efficient electrochemical H2O2 synthesis
    Liu, Chang
    Yu, Zixun
    She, Fangxin
    Chen, Jiaxiang
    Liu, Fangzhou
    Qu, Jiangtao
    Cairney, Julie M.
    Wu, Chongchong
    Liu, Kailong
    Yang, Weijie
    Zheng, Huiling
    Chen, Yuan
    Li, Hao
    Wei, Li
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (02) : 446 - 459
  • [2] Promotion of the Efficient Electrocatalytic Production of H2O2 by N,O- Co-Doped Porous Carbon
    Sun, Lina
    Sun, Liping
    Huo, Lihua
    Zhao, Hui
    NANOMATERIALS, 2023, 13 (07)
  • [3] Optimizing the Pd Sites in Pure Metallic Aerogels for Efficient Electrocatalytic H2O2 Production
    Zhang, Xin
    Wang, Cui
    Chen, Kai
    Clark, Adam H.
    Hubner, Rene
    Zhan, Jinhua
    Zhang, Liang
    Eychmuller, Alexander
    Cai, Bin
    ADVANCED MATERIALS, 2023, 35 (14)
  • [4] Coupling Co-N-C with MXenes Yields Highly Efficient Catalysts for H2O2 Production in Acidic Media
    Huang, Xiao
    Liu, Wei
    Zhang, Jingjing
    Song, Min
    Zhang, Chang
    Li, Jingwen
    Zhang, Jian
    Wang, Deli
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (09) : 11350 - 11358
  • [5] Optimizing the binding of the *OOH intermediate via axially coordinated Co-N5 motif for efficient electrocatalytic H2O2 production
    Yan, Lina
    Wang, Chao
    Wang, Yueshuai
    Wang, Yahui
    Wang, Zhaozhao
    Zheng, Lirong
    Lu, Yue
    Wang, Ruzhi
    Chen, Ge
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 338
  • [6] Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production
    Jung, Euiyeon
    Shin, Heejong
    Lee, Byoung-Hoon
    Efremov, Vladimir
    Lee, Suhyeong
    Lee, Hyeon Seok
    Kim, Jiheon
    Hooch Antink, Wytse
    Park, Subin
    Lee, Kug-Seung
    Cho, Sung-Pyo
    Yoo, Jong Suk
    Sung, Yung-Eun
    Hyeon, Taeghwan
    NATURE MATERIALS, 2020, 19 (04) : 436 - +
  • [7] Carbon Black-Supported Single-Atom Co-N-C as an Efficient Oxygen Reduction Electrocatalyst for H2O2 Production in Acidic Media and Microbial Fuel Cell in Neutral Media
    Du, Ying-Xia
    Yang, Qiao
    Lu, Wang-Ting
    Guan, Qing-Yu
    Cao, Fei-Fei
    Zhang, Geng
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (27)
  • [8] Boosting Oxygen Reduction for High-Efficiency H2O2 Electrosynthesis on Oxygen-Coordinated Co-N-C Catalysts
    Shen, Hangjia
    Qiu, Nianxiang
    Yang, Liu
    Guo, Xuyun
    Zhang, Kun
    Thomas, Tiju
    Du, Shiyu
    Zheng, Qifu
    Attfield, J. Paul
    Zhu, Ye
    Yang, Minghui
    SMALL, 2022, 18 (17)
  • [9] Exsolved Co3O4 with tunable oxygen vacancies for electrocatalytic H2O2 production
    Yan, Lina
    Cheng, Xing
    Wang, Yueshuai
    Wang, Zhaozhao
    Zheng, Lirong
    Yan, Yong
    Lu, Yue
    Sun, Shaorui
    Qiu, Wenge
    Chen, Ge
    MATERIALS TODAY ENERGY, 2022, 24
  • [10] Low-Coordinated Pd Site within Amorphous Palladium Selenide for Active, Selective, and Stable H2O2 Electrosynthesis
    Yu, Zhiyong
    Lv, Shengyao
    Yao, Qing
    Fang, Nan
    Xu, Yong
    Shao, Qi
    Pao, Chih-Wen
    Lee, Jyh-Fu
    Li, Guoliang
    Yang, Li-Ming
    Huang, Xiaoqing
    ADVANCED MATERIALS, 2023, 35 (06)