Improved quantification of left ventricular volumes and mass based on endocardial and epicardial surface detection from cardiac MR images using level set models

被引:18
作者
Corsi, C
Lamberti, C
Catalano, O
Maceneaney, P
Bardo, D
Lang, RM
Caiani, EG
Mor-Avi, V
机构
[1] Univ Chicago, Med Ctr, Chicago, IL 60637 USA
[2] Univ Bologna, Dept Elect Comp & Syst Engn, Bologna, Italy
[3] Salvatore Maugeri Fdn, Pavia, Italy
[4] Politecn Milan, Dipartimento Bioingn, I-20133 Milan, Italy
关键词
global ventricular function; ventricular mass; magnetic resonance imaging; computer analysis;
D O I
10.1081/JCMR-200060624
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose. The reproducibility of left ventricular (LV) volume and mass measurements based on subjective slice-by-slice tracing of LV borders is affected by image quality, and volume estimates are biased by geometric modeling. The authors developed a technique for volumetric surface detection (VoSD) and quantification of LV volumes and mass without tracing and geometric approximations. The authors hypothesized that this technique is accurate and more reproducible than the conventional methodology. Methods. Images were obtained in 24 patients in 6 to 10 slices from LV base to apex (GE 1.5 T, FIESTA). Volumetric data were reconstructed, and endocardial and epicardial surfaces were detected using the level set approach. LV volumes were obtained from voxel counts and used to compute ejection fraction (EF) and mass. Conventional measurements (MASS Analysis) were used as a reference to test the accuracy of VoSD technique (linear regression, Bland-Altman). For both techniques, measurements were repeated to compute inter- and intra-observer variability. Results. VoSD values resulted in high correlation with the reference values (EDV: r = 0.98; ESV: r = 0.99; EF: r = 0.91; mass: r = 0.98), with no significant biases (8 ml, 5 ml, 0.2% and -9 g) and narrow limits of agreement (SD: 13 ml, 10 ml, 6% and 9 g). Inter-observer variability of the VoSD technique was lower (range 3 to 5%) than that of the reference technique (5 to 11%; p < 0.05). Intra-observer variability was also lower (1 to 3% vs. 7 to 10%; p < 0.05). Conclusion. V6SD technique allows accurate measurements of LV volumes, EF, and mass, which are more reproducible than the conventional methodology.
引用
收藏
页码:595 / 602
页数:8
相关论文
共 28 条
  • [21] EVALUATION OF LEFT-VENTRICULAR VOLUME AND MASS WITH BREATH-HOLD CINE MR-IMAGING
    SAKUMA, H
    FUJITA, N
    FOO, TKF
    CAPUTO, GR
    NELSON, SJ
    HARTIALA, J
    SHIMAKAWA, A
    HIGGINS, CB
    [J]. RADIOLOGY, 1993, 188 (02) : 377 - 380
  • [22] Nonlinear multiscale analysis of three-dimensional echocardiographic sequences
    Sarti, A
    Mikula, K
    Sgallari, F
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (06) : 453 - 466
  • [23] SETHIAN JA, 1999, METHODS FAST MARCHIN
  • [24] Integrated surface model optimization for freehand three-dimensional echocardiography
    Song, MZ
    Haralick, RM
    Sheehan, FH
    Johnson, RK
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (09) : 1077 - 1090
  • [25] Improved accuracy of quantitative assessment of left ventricular volume and ejection fraction by geometric models with steady-state free precession
    Thiele, H
    Paetsch, I
    Schnackenburg, B
    Bornstedt, A
    Grebe, O
    Wellnhofer, E
    Schuler, G
    Fleck, E
    Nagel, E
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2002, 4 (03) : 327 - 339
  • [26] Evaluation of a new method for automated detection of left ventricular boundaries in time series of magnetic resonance images using an active appearance motion model
    van der Geest, RJ
    Lelieveldt, BPF
    Angelié, E
    Danilouchkine, M
    Swingen, C
    Sonka, M
    Reiber, JHC
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2004, 6 (03) : 609 - 617
  • [27] Neighbor-constrained segmentation with level set based 3-D deformable models
    Yang, J
    Staib, LH
    Duncan, JS
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (08) : 940 - 948
  • [28] Left ventricular mass and volume: Fast calculation with guide-point modeling on MR images
    Young, AA
    Cowan, BR
    Thrupp, SF
    Hedley, WJ
    Dell'Italia, LJ
    [J]. RADIOLOGY, 2000, 216 (02) : 597 - 602