Energy-Efficient LSTM Inference Accelerator for Real-Time Causal Prediction

被引:6
作者
Chen, Zhe [1 ]
Blair, Hugh T. [2 ]
Cong, Jason [1 ]
机构
[1] Univ Calif Los Angeles, Comp Sci Dept, Engn 6,405 Hilgard Ave, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Psychol, Pritzker Hall,405 Hilgard Ave, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Calcium imaging; EEG; energy efficiency; long short-term memory (LSTM); quantization; NEURAL-NETWORK ACCELERATOR;
D O I
10.1145/3495006
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Ever-growing edge applications often require short processing latency and high energy efficiency to meet strict timing and power budget. In this work, we propose that the compact long short-term memory (LSTM) model can approximate conventional acausal algorithms with reduced latency and improved efficiency for real-time causal prediction, especially for the neural signal processing in closed-loop feedback applications. We design an LSTM inference accelerator by taking advantage of the fine-grained parallelism and pipelined feedforward and recurrent updates. We also propose a bit-sparse quantization method that can reduce the circuit area and power consumption by replacing the multipliers with the bit-shift operators. We explore different combinations of pruning and quantization methods for energy-efficient LSTM inference on datasets collected from the electroencephalogram (EEG) and calcium image processing applications. Evaluation results show that our proposed LSTM inference accelerator can achieve 1.19 GOPS/mW energy efficiency. The LSTM accelerator with 2-sbit/16-bit sparse quantization and 60% sparsity can reduce the circuit area and power consumption by 54.1% and 56.3%, respectively, compared with a 16-bit baseline implementation.
引用
收藏
页数:19
相关论文
共 38 条
[1]   All the light that we can see: a new era in miniaturized microscopy [J].
Aharoni, Daniel ;
Khakh, Baljit S. ;
Silva, Alcino J. ;
Golshani, Peyman .
NATURE METHODS, 2019, 16 (01) :11-13
[2]  
Buzski G., 2006, Rhythms of the brain, DOI 10.1093/acprof:oso/9780195301069.001.0001
[3]  
Chanana Ashish, 2017, 2017 42nd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), DOI 10.1109/IRMMW-THz.2017.8067214
[4]  
Chen CX, 2017, ESSCIRC 2017 - 43RD IEEE EUROPEAN SOLID STATE CIRCUITS CONFERENCE, P259, DOI 10.1109/ESSCIRC.2017.8094575
[5]  
Chen Z., 2020, P ACM IEEE INT S LOW, P217
[6]   LANMC: LSTM-Assisted Non-Rigid Motion Correction on FPGA for Calcium Image Stabilization [J].
Chen, Zhe ;
Blair, Hugh T. ;
Cong, Jason .
PROCEEDINGS OF THE 2019 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA'19), 2019, :104-109
[7]  
Chen Zhe, 2018, P INT S LOW POW EL D, V2, P1
[8]  
Conti F, 2018, IEEE CUST INTEGR CIR, DOI 10.1109/ICOPS35962.2018.9575761
[9]  
Gao C., 2021, arXiv
[10]   DeltaRNN: A Power-efficient Recurrent Neural Network Accelerator [J].
Gao, Chang ;
Neil, Daniel ;
Ceolini, Enea ;
Liu, Shih-Chii ;
Delbruck, Tobi .
PROCEEDINGS OF THE 2018 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA'18), 2018, :21-30