A High Gain, Noise Cancelling 3.1-10.6 GHz CMOS LNA for UWB Application

被引:2
|
作者
Zhao, Xiaorong [1 ]
Zhu, Hongjin [1 ]
Shi, Peizhong [1 ]
Ge, Chunpeng [2 ]
Qian, Xiufang [1 ]
Fan, Honghui [1 ]
Fu, Zhongjun [1 ]
机构
[1] Jiangsu Univ Technol, Coll Comp Engn, 1801 Zhongwu Rd, Changzhou 213001, Peoples R China
[2] Singapore Univ Technol & Design, Changi South Ave 1, Singapore 485996, Singapore
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2019年 / 60卷 / 01期
关键词
Common-gate; low noise amplifier; current reuse; noise cancelling; WIDE-BAND LNA; LOW-POWER; AMPLIFIER;
D O I
10.32604/cmc.2019.05661
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of ultra-wideband communications, the design requirements of CMOS radio frequency integrated circuits have become increasingly high. Ultra-wideband (UWB) low noise amplifiers are a key component of the receiver front end. The paper designs a high power gain (S-21) and low noise figure (NF) common gate (CG) CMOS UWB low noise amplifier (LNA) with an operating frequency range between 3.1 GHz and 10.6 GHz. The circuit is designed by TSMC 0.13 mu m RF CMOS technology. In order to achieve high gain and flat gain as well as low noise figure, the circuit uses many technologies. To improve the input impedance matching at low frequencies, the circuit uses the proposed T-match input network. To decrease the total dissipation, the circuit employs current reused technique. The circuit uses he noise cancelling technique to decreases the NF. The simulation results show a flat S-21>20.81 dB, the reverse isolation (S-12) less than -48.929 dB, NF less than 2.617 dB, the minimum noise figure (NFmin)=1.721 dB, the input return loss (S11) and output return loss (S-22) are both less than -14.933 dB over the frequency range of 3.1 GHz to 10.6 GHz. The proposed UWB LNA consumes 1.548 mW without buffer from a 1.2 V power supply.
引用
收藏
页码:133 / 145
页数:13
相关论文
共 50 条
  • [1] Design of a Noise-canceling Differential CMOS LNA for 3.1-10.6 GHz UWB Receivers
    Liu, Jinhua
    Chen, Guican
    Zhang, Ruizhi
    2009 IEEE 8TH INTERNATIONAL CONFERENCE ON ASIC, VOLS 1 AND 2, PROCEEDINGS, 2009, : 1169 - +
  • [2] A 3.1-10.6 GHz UWB LNA Based on Self Cascode Technique for Improved Bandwidth and High Gain
    Pandey, Sunil
    Gawande, Tushar
    Kondekar, P. N.
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 101 (04) : 1867 - 1882
  • [3] Design of a fully differential CMOS LNA for 3.1-10.6 GHz UWB communication systems
    Institute of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
    J. China Univ. Post Telecom., 2008, 4 (107-111): : 107 - 111
  • [4] A Low power UWB CMOS Low Noise Amplifier for 3.1-10.6 GHz in Receivers
    Mahdavi, Amir
    Geran, Fatemeh
    2016 8TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2016, : 596 - 600
  • [5] A 3.1-10.6 GHz Low Power High Gain UWB LNA Using Current Reuse Technique
    Ragheb, A. N.
    Fahmy, G. A.
    Ashour, I.
    Ammar, A.
    2012 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEMS (ICIAS), VOLS 1-2, 2012, : 741 - 744
  • [6] A high-gain differential CMOS LNA for 3.1-10.6 GHz ultra-wideband receivers
    Zhang, Hong
    Chen, Gui-Can
    Lai, Su-Ming
    Liu, Jin-Hua
    IEICE ELECTRONICS EXPRESS, 2008, 5 (15) : 523 - 529
  • [7] A series peaked gm-boosted 3.1-10.6 GHz CMOS CG UWB LNA for WiMedia
    Khurram, Muhammad
    Hasan, S. M. Rezaul
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2012, 54 (02) : 532 - 535
  • [8] A low power and high linearity UWB low noise amplifier (LNA) for 3.1-10.6 GHz wireless applications in 0.13 μm CMOS process
    Rastegar, Habib
    Saryazdi, Saeed
    Hakimi, Ahmad
    MICROELECTRONICS JOURNAL, 2013, 44 (03) : 201 - 209
  • [9] A 3.1-10.6 GHz Forward Body Biased Ultra-low-voltage UWB LNA
    Rafati, Maryam
    Qasemi, Seyed Ruhallah
    Nejati, Ali
    Amiri, Parviz
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 326 - 330
  • [10] A 0.9V, 3.1-10.6 GHz CMOS LNA with high gain and wideband input match in 90 nm CMOS process
    Pandey, Sunil
    Kondekar, P. N.
    Nigam, Kaushal
    Sharma, Dheeraj
    2016 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS), 2016, : 730 - 733