Information Geometry on the κ-Thermostatistics

被引:13
作者
Wada, Tatsuaki [1 ]
Scarfone, Antonio M. [2 ]
机构
[1] Ibaraki Univ, Dept Elect & Elect Engn, Hitachi, Ibaraki 3168511, Japan
[2] Politecn Torino, CNR, ISC, I-10129 Turin, Italy
基金
日本学术振兴会;
关键词
DISTRIBUTIONS;
D O I
10.3390/e17031204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore the information geometric structure of the statistical manifold generated by the kappa-deformed exponential family. The dually-flat manifold is obtained as a dualistic Hessian structure by introducing suitable generalization of the Fisher metric and affine connections. As a byproduct, we obtain the fluctuation-response relations in the kappa-formalism based on the kappa-generalized exponential family.
引用
收藏
页码:1204 / 1217
页数:14
相关论文
共 14 条
[1]  
Amari S.-I., 2000, Translations of mathematical monographs
[2]   Geometry of q-Exponential Family of Probability Distributions [J].
Amari, Shun-ichi ;
Ohara, Atsumi .
ENTROPY, 2011, 13 (06) :1170-1185
[3]  
Callen H.B., 1960, Thermodynamics
[4]   Statistical mechanics in the context of special relativity. II. [J].
Kaniadakis, G .
PHYSICAL REVIEW E, 2005, 72 (03)
[5]   Statistical mechanics in the context of special relativity [J].
Kaniadakis, G .
PHYSICAL REVIEW E, 2002, 66 (05) :17-056125
[6]   Maximum entropy principle and power-law tailed distributions [J].
Kaniadakis, G. .
EUROPEAN PHYSICAL JOURNAL B, 2009, 70 (01) :3-13
[7]  
Matsuzoe H., 2014, GEOMETRIC THEORY INF, P57
[8]  
Naudts J, 2011, GENERALISED THERMOSTATISTICS, P1, DOI 10.1007/978-0-85729-355-8
[9]  
Naudts J., 2004, J INEQUAL PURE APPL, V5, P102
[10]   Generalised Exponential Families and Associated Entropy Functions [J].
Naudts, Jan .
ENTROPY, 2008, 10 (03) :131-149