Steiner Wiener index of Line graphs

被引:3
|
作者
Rasila, V. A. [1 ]
Vijayakumar, Ambat [1 ]
机构
[1] Cochin Univ Sci & Technol, Dept Math, Cochin, Kerala, India
关键词
Distance in graphs; Steiner distance; Wiener index; k-Steiner Wiener index; Line graphs; Steiner Gutman index; DISTANCE;
D O I
10.1007/s13226-021-00199-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a set of vertices of a connected graph G. The Steiner distance of S is the minimum size among all connected subgraphs whose vertex sets contain S. The sum of all Steiner distances on sets of size k is called the Steiner k-Wiener index. We study inequalities on Steiner Wiener index of line graphs. Also we study relations among Steiner Wiener index of line graphs, Steiner edge Wiener index and Steiner Gutman index.
引用
收藏
页码:932 / 938
页数:7
相关论文
共 50 条
  • [21] Wiener index of iterated line graphs of trees homeomorphic to H
    Knor, M.
    Potocnik, P.
    Skrekovski, R.
    DISCRETE MATHEMATICS, 2013, 313 (10) : 1104 - 1111
  • [22] Trees, quadratic line graphs and the Wiener index
    Dobrynin, AA
    Mel'nikov, LS
    CROATICA CHEMICA ACTA, 2004, 77 (03) : 477 - 480
  • [23] Steiner Wiener Index of Complete m-Ary Trees
    Legese, Mesfin Masre
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 12 (02): : 101 - 109
  • [24] On the Steiner hyper-Wiener index of a graph
    Tratnik, Niko
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 337 : 360 - 371
  • [25] Wiener index of some graphs
    Yazdani, Javad
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 923 - 926
  • [26] WIENER INDEX AND TRACEABLE GRAPHS
    Yang, Lihui
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (03) : 380 - 383
  • [27] On Peripheral Wiener Index: Line Graphs, Zagreb Index, and Cut Method
    Narayankar, Kishori P.
    Kahsay, Afework T.
    Klavzar, Sandi
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2020, 83 (01) : 129 - 141
  • [28] Steiner (Revised) Szeged Index of Graphs
    Ghorbani, Modjtaba
    Li, Xueliang
    Maimani, Hamid Reza
    Mao, Yaping
    Rahmani, Shaghayegh
    Rajabi-Parsa, Mina
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 82 (03) : 733 - 742
  • [29] On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs
    Alizadeh, Yaser
    Klavzar, Sandi
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 328 : 113 - 118
  • [30] On the Wiener Index of Graphs
    Wu, Xiaoying
    Liu, Huiqing
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (02) : 535 - 544