Steiner Wiener index of Line graphs

被引:3
|
作者
Rasila, V. A. [1 ]
Vijayakumar, Ambat [1 ]
机构
[1] Cochin Univ Sci & Technol, Dept Math, Cochin, Kerala, India
关键词
Distance in graphs; Steiner distance; Wiener index; k-Steiner Wiener index; Line graphs; Steiner Gutman index; DISTANCE;
D O I
10.1007/s13226-021-00199-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a set of vertices of a connected graph G. The Steiner distance of S is the minimum size among all connected subgraphs whose vertex sets contain S. The sum of all Steiner distances on sets of size k is called the Steiner k-Wiener index. We study inequalities on Steiner Wiener index of line graphs. Also we study relations among Steiner Wiener index of line graphs, Steiner edge Wiener index and Steiner Gutman index.
引用
收藏
页码:932 / 938
页数:7
相关论文
共 50 条
  • [1] Steiner Wiener index of Line graphs
    V. A. Rasila
    Ambat Vijayakumar
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 932 - 938
  • [2] Steiner Wiener index and line graphs of trees
    Kovse, Matjaz
    Misanantenaina, Valisoa Razanajatovo
    Wagner, Stephan
    DISCRETE MATHEMATICS LETTERS, 2022, 9 : 86 - 91
  • [3] Steiner Wiener index of block graphs
    Kovse, Matjaz
    Rasila, V. A.
    Vijayakumar, Ambat
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 833 - 840
  • [4] Steiner Wiener index and connectivity of graphs
    Mao, Yaping
    Wang, Zhao
    Xiao, Yuzhi
    Ye, Chengfu
    UTILITAS MATHEMATICA, 2017, 102 : 51 - 57
  • [5] Bounds on the Steiner-Wiener index of graphs
    Rasila, V. A.
    Vijayakumar, Ambat
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (06)
  • [6] Wiener index and Steiner 3-Wiener index of graphs
    Kovse, Matjaz
    Rasila, V. A.
    Vijayakumar, Ambat
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (09)
  • [7] Steiner Wiener Index of the Square of Graphs
    Chai, Daqian
    An, Xinhui
    Wu, Baoyindureng
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 88 (01) : 219 - 232
  • [8] Nordhaus-Gaddum-type results for the Steiner Wiener index of graphs
    Mao, Yaping
    Wang, Zhao
    Gutman, Ivan
    Li, He
    DISCRETE APPLIED MATHEMATICS, 2017, 219 : 167 - 175
  • [9] THE STEINER WIENER INDEX OF A GRAPH
    Li, Xueliang
    Mao, Yaping
    Gutman, Ivan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (02) : 455 - 465
  • [10] On the Extremal Steiner Wiener Index of Unicyclic Graphs
    Fan, Yinqin
    Zhao, Biao
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 88 (01) : 205 - 218