Soot microphysical effects on liquid clouds, a multi-model investigation

被引:47
作者
Koch, D. [1 ,2 ]
Balkanski, Y. [3 ]
Bauer, S. E. [1 ,2 ]
Easter, R. C. [8 ]
Ferrachat, S. [4 ]
Ghan, S. J. [8 ]
Hoose, C. [7 ,10 ]
Iversen, T. [5 ]
Kirkevag, A. [5 ]
Kristjansson, J. E. [10 ]
Liu, X. [8 ]
Lohmann, U. [4 ]
Menon, S. [9 ]
Quaas, J. [6 ]
Schulz, M. [3 ,10 ]
Seland, O. [5 ]
Takemura, T. [11 ]
Yan, N. [3 ]
机构
[1] Columbia Univ, New York, NY USA
[2] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[3] Lab Sci Climat & Environm, Gif Sur Yvette, France
[4] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland
[5] Norwegian Meteorol Inst, Oslo, Norway
[6] Max Planck Inst Meteorol, Hamburg, Germany
[7] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Karlsruhe, Germany
[8] Pacific NW Natl Lab, Richland, WA 99352 USA
[9] Lawrence Berkeley Lab, Berkeley, CA USA
[10] Univ Oslo, Dept Geosci, Oslo, Norway
[11] Kyushu Univ, Fukuoka 812, Japan
关键词
CLIMATE MODEL ECHAM5-HAM; GLOBAL CLIMATE; AEROSOL; PARAMETERIZATION; SIMULATION; TRANSPORT; AEROCOM;
D O I
10.5194/acp-11-1051-2011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We use global models to explore the microphysical effects of carbonaceous aerosols on liquid clouds. Although absorption of solar radiation by soot warms the atmosphere, soot may cause climate cooling due to its contribution to cloud condensation nuclei (CCN) and therefore cloud brightness. Six global models conducted three soot experiments; four of the models had detailed aerosol microphysical schemes. The average cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.11 Wm(-2), comparable in size but opposite in sign to the respective direct effect. In a more idealized fossil fuel black carbon experiment, some models calculated a positive cloud response because soot provides a deposition sink for sulfuric and nitric acids and secondary organics, decreasing nucleation and evolution of viable CCN. Biofuel soot particles were also typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models <+/- 0.06 Wm(-2) from clouds. The results are subject to the caveats that variability among models, and regional and interrannual variability for each model, are large. This comparison together with previously published results stresses the need to further constrain aerosol microphysical schemes. The non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes.
引用
收藏
页码:1051 / 1064
页数:14
相关论文
共 50 条
  • [41] Application of a multi-step soot model in a thermodynamic diesel engine model
    Rao, Varun
    Honnery, Damon
    FUEL, 2014, 135 : 269 - 278
  • [42] Aerosols at the poles: an AeroCom Phase II multi-model evaluation
    Sand, Maria
    Samset, Bjorn H.
    Balkanski, Yves
    Bauer, Susanne
    Bellouin, Nicolas
    Berntsen, Terje K.
    Bian, Huisheng
    Chin, Mian
    Diehl, Thomas
    Easter, Richard
    Ghan, Steven J.
    Iversen, Trond
    Kirkevag, Alf
    Lamarque, Jean-Francois
    Lin, Guangxing
    Liu, Xiaohong
    Luo, Gan
    Myhre, Gunnar
    van Noije, Twan
    Penner, Joyce E.
    Schulz, Michael
    Seland, Oyvind
    Skeie, Ragnhild B.
    Stier, Philip
    Takemura, Toshihiko
    Tsigaridis, Kostas
    Yu, Fangqun
    Zhang, Kai
    Zhang, Hua
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (19) : 12197 - 12218
  • [43] Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation
    Travnikov, Oleg
    Angot, Helene
    Artaxo, Paulo
    Bencardino, Mariantonia
    Bieser, Johannes
    D'Amore, Francesco
    Dastoor, Ashu
    De Simone, Francesco
    Dieguez, Mara del Carmen
    Dommergue, Aurelien
    Ebinghaus, Ralf
    Feng, Xin Bin
    Gencarelli, Christian N.
    Hedgecock, Ian M.
    Magand, Olivier
    Martin, Lynwill
    Matthias, Volker
    Mashyanov, Nikolay
    Pirrone, Nicola
    Ramachandran, Ramesh
    Read, Katie Alana
    Ryjkov, Andrei
    Selin, Noelle E.
    Sena, Fabrizio
    Song, Shaojie
    Sprovieri, Francesca
    Wip, Dennis
    Wagberg, Ingvar
    Yang, Xin
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (08) : 5271 - 5295
  • [44] Effects of 20-100nm particles on liquid clouds in the clean summertime Arctic
    Leaitch, W. Richard
    Korolev, Alexei
    Aliabadi, Amir A.
    Burkart, Julia
    Willis, Megan D.
    Abbatt, Jonathan P. D.
    Bozem, Heiko
    Hoor, Peter
    Koellnr, Franziska
    Schneider, Johannes
    Herber, Andreas
    Konrad, Christian
    Brauner, Ralf
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (17) : 11107 - 11124
  • [45] The impact of microphysical parameters, ice nucleation mode, and habit growth on the ice/liquid partitioning in mixed-phase Arctic clouds
    Ervens, Barbara
    Feingold, Graham
    Sulia, Kara
    Harrington, Jerry
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [46] Multi-model ensemble approach for statistically downscaling general circulation model outputs to precipitation
    Sachindra, D. A.
    Huang, F.
    Barton, A. F.
    Perera, B. J. C.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2014, 140 (681) : 1161 - 1178
  • [47] A Multi-model Air Quality System for Health Research: Road model development and evaluation
    Seaton, Martin
    'Neill, James
    Bien, Brian
    Hood, Christina
    Jackson, Mark
    Jackson, Rose
    Johnson, Kate
    Oades, Molly
    Stidworthy, Amy
    Stocker, Jenny
    Carruthers, David
    ENVIRONMENTAL MODELLING & SOFTWARE, 2022, 155
  • [48] Local Model Network Based Multi-Model Predictive Control for a Boiler - Turbine System
    Zhu, Hongxia
    Zhao, Gang
    Sun, Li
    Lee, Kwang Y.
    IFAC PAPERSONLINE, 2020, 53 (02): : 12530 - 12535
  • [49] Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models
    Eyring, V.
    Cionni, I.
    Bodeker, G. E.
    Charlton-Perez, A. J.
    Kinnison, D. E.
    Scinocca, J. F.
    Waugh, D. W.
    Akiyoshi, H.
    Bekki, S.
    Chipperfield, M. P.
    Dameris, M.
    Dhomse, S.
    Frith, S. M.
    Garny, H.
    Gettelman, A.
    Kubin, A.
    Langematz, U.
    Mancini, E.
    Marchand, M.
    Nakamura, T.
    Oman, L. D.
    Pawson, S.
    Pitari, G.
    Plummer, D. A.
    Rozanov, E.
    Shepherd, T. G.
    Shibata, K.
    Tian, W.
    Braesicke, P.
    Hardiman, S. C.
    Lamarque, J. F.
    Morgenstern, O.
    Pyle, J. A.
    Smale, D.
    Yamashita, Y.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (19) : 9451 - 9472
  • [50] Improving Ordinal Transformation Through Optimal Combination of Multi-model Predictions
    Zhang, Si
    Xu, Jie
    Huang, Edward
    Chen, Chun-Hung
    Gao, Siyang
    PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2016, : 1545 - 1549