Nonlinear Fokker-Planck equations related to standard thermostatistics

被引:0
作者
Schwaemmle, V. [1 ]
Curado, E. M. F. [1 ]
Nobre, F. D. [1 ]
机构
[1] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil
来源
COMPLEXITY, METASTABILITY AND NONEXTENSIVITY | 2007年 / 965卷
关键词
nonlinear Fokker-Planck equations; Boltzmann distribution; entropy;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Proving the H-theorem by making use of nonlinear Fokker-Planck equations leads to classes of these equations related to the same entropy and their equilibrium state corresponds to the one obtained by maximizing such an entropy under constraints of an external potential. In the present work the numerical integration of a subset of the class associated to the Boltzmann-Gibbs entropy is carried out and the dynamics of such systems is analyzed.
引用
收藏
页码:152 / 156
页数:5
相关论文
共 18 条
[11]   Non-extensive statistical mechanics and generalized Fokker-Planck equation [J].
Plastino, AR ;
Plastino, A .
PHYSICA A, 1995, 222 (1-4) :347-354
[12]   A general nonlinear Fokker-Planck equation and its associated entropy [J].
Schwaemmle, V. ;
Curado, E. M. F. ;
Nobre, F. D. .
EUROPEAN PHYSICAL JOURNAL B, 2007, 58 (02) :159-165
[13]  
SCHWAMMLE V, 2007, ARXIV07073153
[14]   Free energies based on generalized entropies and H-theorems for nonlinear Fokker-Planck equations [J].
Shiino, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (06) :2540-2553
[15]   POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS [J].
TSALLIS, C .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :479-487
[16]  
TSALLIS C, 1996, PHYS REV E R, V2197, P54
[17]  
VANKEMPEN, 1981, STOCHASTIC PROCESSES
[18]   Numerical method for the nonlinear Fokker-Planck equation [J].
Zhang, DS ;
Wei, GW ;
Kouri, DJ ;
Hoffman, DK .
PHYSICAL REVIEW E, 1997, 56 (01) :1197-1206