Large-Scale Sublattice Asymmetry in Pure and Boron-Doped Graphene

被引:56
作者
Usachov, Dmitry Yu. [1 ]
Fedorov, Alexander V. [1 ,2 ,3 ]
Vilkov, Oleg Yu. [1 ]
Petukhov, Anatoly E. [1 ]
Rybkin, Artem G. [1 ]
Ernst, Arthur [4 ]
Otrokov, Mikhail M. [1 ,5 ,6 ,7 ]
Chulkov, Evgueni V. [1 ,5 ,6 ,7 ]
Ogorodnikov, Ilya I. [8 ]
Kuznetsov, Mikhail V. [8 ]
Yashina, Lada V. [9 ]
Kataev, Elmar Yu. [9 ]
Erofeevskaya, Anna V. [1 ]
Voroshnin, Vladimir Yu. [1 ]
Adamchuk, Vera K. [1 ]
Laubschat, Clemens [10 ]
Vyalikh, Denis V. [1 ,5 ,6 ,10 ,11 ]
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
[2] Univ Cologne, Phys Inst 2, Zulpicher Str 77, D-50937 Cologne, Germany
[3] IFW Dresden, POB 270116, D-01171 Dresden, Germany
[4] Max Planck Inst Mikrostrukturphys, Weinberg 2, D-06120 Halle, Germany
[5] DIPC, Dept Fis Mat, San Sebastian 20080, Spain
[6] CFM MPC UPV EHU, San Sebastian 20080, Spain
[7] Tomsk State Univ, Lenina Ave 36, Tomsk 634050, Russia
[8] Russian Acad Sci, Inst Solid State Chem, Ural Branch, Pervomayskaya St 91, Ekaterinburg 620990, Russia
[9] Moscow MV Lomonosov State Univ, Leniskie Gory 1-3, Moscow 199991, Russia
[10] Tech Univ Dresden, Inst Solid State Phys, D-01062 Dresden, Germany
[11] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Spain
关键词
Graphene; boron; doping; sublattice asymmetry; electronic structure; photoemission spectroscopy; FIELD-EFFECT TRANSISTORS; MONOLAYER GRAPHITE; TRANSPORT; SURFACE; APPROXIMATION; NITROGEN; NI(111); GROWTH; CARBON;
D O I
10.1021/acs.nanolett.6b01795
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The implementation of future graphene-based electronics is essentially restricted by the absence of a band gap in the electronic structure of graphene. Options of how to create a band gap in a reproducible and processing compatible manner are very limited at the moment. A promising approach for the graphene band gap engineering is to introduce a large-scale sublattice asymmetry. Using photoelectron diffraction and spectroscopy we have demonstrated a selective incorporation of boron impurities into only one of the two graphene sublattices. We have shown that in the well-oriented graphene on the Co(0001) surface the carbon atoms occupy two nonequivalent positions with respect to the Co lattice, namely top and hollow sites. Boron impurities embedded into the graphene lattice preferably occupy the hollow sites due to a site-specific interaction with the Co pattern. Our theoretical calculations predict that such boron-doped graphene possesses a band gap that can be precisely controlled by the dopant concentration. B-graphene with doping asymmetry is, thus, a novel material, which is worth considering as a good candidate for electronic applications.
引用
收藏
页码:4535 / 4543
页数:9
相关论文
共 42 条
[1]   Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper [J].
Banszerus, Luca ;
Schmitz, Michael ;
Engels, Stephan ;
Dauber, Jan ;
Oellers, Martin ;
Haupt, Federica ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Beschoten, Bernd ;
Stampfer, Christoph .
SCIENCE ADVANCES, 2015, 1 (06)
[2]   Atomic Scale Identification of Coexisting Graphene Structures on Ni(111) [J].
Bianchini, Federico ;
Patera, Laerte L. ;
Peressi, Maria ;
Africh, Cristina ;
Comelli, Giovanni .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (03) :467-473
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Atomic structure of monolayer graphite formed on Ni(111) [J].
Gamo, Y ;
Nagashima, A ;
Wakabayashi, M ;
Terai, M ;
Oshima, C .
SURFACE SCIENCE, 1997, 374 (1-3) :61-64
[5]   Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum [J].
Gao, Libo ;
Ren, Wencai ;
Xu, Huilong ;
Jin, Li ;
Wang, Zhenxing ;
Ma, Teng ;
Ma, Lai-Peng ;
Zhang, Zhiyong ;
Fu, Qiang ;
Peng, Lian-Mao ;
Bao, Xinhe ;
Cheng, Hui-Ming .
NATURE COMMUNICATIONS, 2012, 3
[6]   Growth and electronic structure of boron-doped graphene [J].
Gebhardt, J. ;
Koch, R. J. ;
Zhao, W. ;
Hoefert, O. ;
Gotterbarm, K. ;
Mammadov, S. ;
Papp, C. ;
Goerling, A. ;
Steinrueck, H. -P. ;
Seyller, Th. .
PHYSICAL REVIEW B, 2013, 87 (15)
[7]   Doping graphene with metal contacts [J].
Giovannetti, G. ;
Khomyakov, P. A. ;
Brocks, G. ;
Karpan, V. M. ;
van den Brink, J. ;
Kelly, P. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)
[8]   Dynamics of graphene growth on a metal surface: a time-dependent photoemission study [J].
Grueneis, Alexander ;
Kummer, Kurt ;
Vyalikh, Denis V. .
NEW JOURNAL OF PHYSICS, 2009, 11
[9]   COHERENT-POTENTIAL APPROXIMATION FOR A "NONOVERLAPPING-MUFFIN-TIN-POTENTIAL MODEL OF RANDOM SUBSTITUTIONAL ALLOYS [J].
GYORFFY, BL .
PHYSICAL REVIEW B, 1972, 5 (06) :2382-&
[10]   Electronic properties of hydrogenated quasi-free-standing graphene [J].
Haberer, D. ;
Petaccia, L. ;
Wang, Y. ;
Quian, H. ;
Farjam, M. ;
Jafari, S. A. ;
Sachdev, H. ;
Federov, A. V. ;
Usachov, D. ;
Vyalikh, D. V. ;
Liu, X. ;
Vilkov, O. ;
Adamchuk, V. K. ;
Irle, S. ;
Knupfer, M. ;
Buechner, B. ;
Grueneis, A. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (11) :2639-2643