Comparison and Extremal Results on Three Eccentricity-based Invariants of Graphs

被引:7
|
作者
Xu, Ke Xiang [1 ]
Das, Kinkar Chandra [2 ]
Gu, Xiao Qian [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Peoples R China
[2] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
Eccentricity (of vertex); first Zagreb eccentricity index; second Zagreb eccentricity index; eccentric complexity; diameter; TOPOLOGICAL INDEXES; MOLECULAR-ORBITALS;
D O I
10.1007/s10114-019-8439-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first and second Zagreb eccentricity indices of graph G are defined as: E1(G)= n-ary sumation vi is an element of V(G)epsilon G(vi)2, E2(G)= n-ary sumation vivj is an element of E(G)epsilon G(vi)epsilon G(vj) where epsilon(G)(upsilon(i)) denotes the eccentricity of vertex upsilon(i) in G. The eccentric complexity C-ec(G) of G is the number of different eccentricities of vertices in G. In this paper we present some results on the comparison between E1(G)n and E2(G)m for any connected graphs G of order n with m edges, including general graphs and the graphs with given C-ec. Moreover, a Nordhaus-Gaddum type result C-ec(G) + C-ec(G) is determined with extremal graphs at which the upper and lower bounds are attained respectively.
引用
收藏
页码:40 / 54
页数:15
相关论文
共 22 条
  • [1] Comparison and Extremal Results on Three Eccentricity-based Invariants of Graphs
    Ke Xiang XU
    Kinkar Chandra DAS
    Xiao Qian GU
    Acta Mathematica Sinica,English Series, 2020, (01) : 40 - 54
  • [2] Comparison and Extremal Results on Three Eccentricity-based Invariants of Graphs
    Ke Xiang Xu
    Kinkar Chandra Das
    Xiao Qian Gu
    Acta Mathematica Sinica, English Series, 2020, 36 : 40 - 54
  • [3] COMPARING ECCENTRICITY-BASED GRAPH INVARIANTS
    Hua, Hongbo
    Wang, Hongzhuan
    Gutman, Ivan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (04) : 1111 - 1125
  • [4] Comparison Between Two Eccentricity-based Topological Indices of Graphs
    Xu, Kexiang
    Li, Xia
    CROATICA CHEMICA ACTA, 2016, 89 (04) : 499 - 504
  • [5] Bounds for eccentricity-based parameters of graphs
    Tang, Yunfang
    Qi, Xuli
    West, Douglas B.
    DISCRETE APPLIED MATHEMATICS, 2025, 362 : 109 - 123
  • [6] On two eccentricity-based topological indices of graphs
    Xu, Kexiang
    Alizadeh, Yaser
    Das, Kinkar Ch.
    DISCRETE APPLIED MATHEMATICS, 2017, 233 : 240 - 251
  • [7] On a Novel Eccentricity-based Invariant of a Graph
    Ke Xiang XU
    Kinkar Ch.DAS
    Ayse Dilek MADEN
    Acta Mathematica Sinica,English Series, 2016, 32 (12) : 1477 - 1493
  • [8] On a Novel Eccentricity-based Invariant of a Graph
    Xu, Ke Xiang
    Das, Kinkar Ch.
    Maden, Ayse Dilek
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (12) : 1477 - 1493
  • [9] On eccentricity-based entropy measures for dendrimers
    Huang, Rongbing
    Siddiqui, Muhammad Kamran
    Manzoor, Shazia
    Ahmad, Sarfraz
    Cancan, Murat
    HELIYON, 2021, 7 (08)
  • [10] On a novel eccentricity-based invariant of a graph
    Ke Xiang Xu
    Kinkar Ch. Das
    Ayse Dilek Maden
    Acta Mathematica Sinica, English Series, 2016, 32 : 1477 - 1493