Chaotic time series forecasting using online least squares support vector machine regression

被引:34
|
作者
Ye, MY [1 ]
Wang, XD
Zhang, HR
机构
[1] Zhejiang Normal Univ, Coll Math & Phys, Jinhua 321004, Peoples R China
[2] Zhejiang Normal Univ, Coll Informat Sci & Engn, Jinhua 321004, Peoples R China
关键词
chaotic time series; forecasting; online leaming; support vector machines;
D O I
10.7498/aps.54.2568
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A chaotic time series forecasting method based on online least squares support vector machine (LS-SVM) regression is proposed. The difference between the online LS-SVM and offline support vector machine (SVM) is that the online LS-SVM is still effective for the chaotic system with a variation of the system parameter. Four chaotic time series, namely, Chen's system, Rossler system, Henon map and chaotic electroencephalogram (EEG) signal, are used to evaluate the performance. The results verify the ability of the method in chaotic time series prediction.
引用
收藏
页码:2568 / 2573
页数:6
相关论文
共 15 条
  • [1] Learning and predicting time series by neural networks
    Freking, Ansgar
    Kinzel, Wolfgang
    Kanter, Ido
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (05): : 1 - 050903
  • [2] Neural nerwork based robust adaptive synchronization of a chaotic system
    Guan, XP
    Tang, YG
    Fan, ZP
    Wang, YQ
    [J]. ACTA PHYSICA SINICA, 2001, 50 (11) : 2112 - 2115
  • [3] Online learning with kernels
    Kivinen, J
    Smola, AJ
    Williamson, RC
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (08) : 2165 - 2176
  • [4] Adaptive least square kernel algorithms and applications
    Kuh, A
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 2104 - 2107
  • [5] Control of chaos solely based on RBF neural network without an analytical model
    Liu, D
    Ren, HP
    Kong, ZQ
    [J]. ACTA PHYSICA SINICA, 2003, 52 (03) : 531 - 535
  • [6] Accurate on-line support vector regression
    Ma, JS
    Theiler, J
    Perkins, S
    [J]. NEURAL COMPUTATION, 2003, 15 (11) : 2683 - 2703
  • [7] Minimum description length neural networks for time series prediction
    Small, M
    Tse, CK
    [J]. PHYSICAL REVIEW E, 2002, 66 (06): : 12
  • [8] Suykens J. A. K., 2000, Neural Network World, V10, P29
  • [9] Neural network control for nonlinear chaotic motion
    Tan, W
    Wang, YN
    Liu, ZR
    Zhou, SW
    [J]. ACTA PHYSICA SINICA, 2002, 51 (11) : 2463 - 2466
  • [10] Vapnik V. N., 2000, The Nature of Statistical Learning Theory