On delay-dependent stabilization analysis for the switched time-delay systems with the state-driven switching strategy

被引:32
作者
Chiou, Juing-Shian [1 ]
Wang, Chi-Jo [1 ]
Cheng, Chun-Ming [2 ]
机构
[1] So Taiwan Univ, Dept Elect Engn, Tainan 710, Taiwan
[2] So Taiwan Univ, Inst Mechatron Sci & Technol, Tainan 710, Taiwan
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2011年 / 348卷 / 02期
关键词
STABILITY ANALYSIS; LYAPUNOV FUNCTIONS; UNCERTAIN SYSTEMS; CRITERIA;
D O I
10.1016/j.jfranklin.2010.11.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For the switched time-delay systems, the delay-dependent stability criteria will be derived under a state-driven switching law. A linear state transformation was introduced to transfer the switched time-delay system. On delay dependent stabilization analysis, we apply the Lyapunov-Krasovskii functionals to analyze the stabilization of the switched time-delay systems. This method can be applied to cases when all individual switched systems are unstable. Filially, one example is exploited to illustrate the proposed schemes. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:261 / 276
页数:16
相关论文
共 30 条
[1]   Lie-algebraic stability criteria or switched systems [J].
Agrachev, AA ;
Liberzon, D .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (01) :253-269
[2]  
Chen C.T., 1984, Linear System Theory and Design
[3]   On quadratic Lyapunov functions [J].
Cheng, DZ ;
Guo, L ;
Huang, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (05) :885-890
[4]   Stability analysis for a class of switched large-scale time-delay systems via time-switched method [J].
Chiou, J. -S. .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2006, 153 (06) :684-688
[5]   A converse Lyapunov theorem for a class of dynamical systems which undergo switching [J].
Dayawansa, WP ;
Martin, CF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (04) :751-760
[6]  
Hespanha J. P., 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), P2655, DOI 10.1109/CDC.1999.831330
[7]  
Jafarov EM, 2001, P AMER CONTR CONF, P3389, DOI 10.1109/ACC.2001.946153
[8]   Quadratic stabilization of switched systems [J].
Ji, ZJ ;
Wang, L ;
Xie, GM .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2005, 36 (07) :395-404
[9]  
Kim TH, 2001, INT J SYST SCI, V32, P1199, DOI 10.1080/00207720010024706
[10]   On the Liapunov-Krasovskii functionals for stability analysis of linear delay systems [J].
Kolmanovskii, VB ;
Niculescu, SI ;
Richard, JP .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (04) :374-384