A Time-Domain Volume Integral Equation and Its Marching-On-in-Degree Solution for Analysis of Dispersive Dielectric Objects

被引:41
作者
Shi, Yan [1 ,2 ]
Jin, Jian-Ming [2 ,3 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710071, Shaanxi, Peoples R China
[2] Univ Illinois, Dept Elect & Comp Engn, Ctr Computat Electromagnet, Urbana, IL 61801 USA
[3] Univ Illinois, Electromagnet Lab, Urbana, IL 61801 USA
基金
中国国家自然科学基金;
关键词
Electric flux density; marching-on-in-degree (MOD); medium susceptibility; time-domain volume integral equation (TDVIE); weighted Laguerre polynomials; TRANSIENT ELECTROMAGNETIC SCATTERING; SCHEME;
D O I
10.1109/TAP.2010.2103038
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A marching-on-in-degree (MOD)-based scheme for analyzing transient electromagnetic scattering from three-dimensional dispersive dielectric objects is proposed. A time-domain volume integral equation (TDVIE) for the electric flux density throughout the object is first formulated and then solved using the MOD scheme. With the use of weighted Laguerre polynomials as entire-domain temporal basis functions, the convolution of the electric flux density and the medium susceptibility and its derivatives can be handled analytically. By employing the Galerkin temporal testing procedure, the time variable is eliminated in the resultant recursive matrix equation so that the proposed algorithm overcomes the late-time instability problem that may occur in the conventional marching-on-in-time (MOT) approach. Some complex dispersive media, such as the Debye, Lorentz, and Drude media, are simulated to illustrate the validity of the TDVIE-MOD algorithm.
引用
收藏
页码:969 / 978
页数:10
相关论文
共 24 条
[1]  
Caloz C, 2006, ELECTROMAGNETIC METAMATERIALS: TRANSMISSION LINE THEORY AND MICROWAVE APPLICATIONS: THE ENGINEERING APPROACH, P1
[2]   Solution of time domain electric field integral equation using the Laguerre polynomials [J].
Chung, YS ;
Sarkar, TK ;
Jung, BH ;
Salazar-Palma, M ;
Ji, Z ;
Jang, S ;
Kim, K .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (09) :2319-2328
[3]   Solution of time domain electric field integral equation for arbitrarily shaped dielectric bodies using an unconditionally stable methodology [J].
Chung, YS ;
Sarkar, TK ;
Jung, BH .
RADIO SCIENCE, 2003, 38 (03) :14/1-14/12
[4]   Averaging techniques for time-marching schemes for retarded potential integral equations [J].
Davies, PJ ;
Duncan, DB .
APPLIED NUMERICAL MATHEMATICS, 1997, 23 (03) :291-310
[5]   A METHOD OF ANALYZING THE SCALING VIOLATION OF INCLUSIVE SPECTRA IN HARD PROCESSES [J].
FURMANSKI, W ;
PETRONZIO, R .
NUCLEAR PHYSICS B, 1982, 195 (02) :237-261
[6]   A new temporal basis function for the time-domain integral equation method [J].
Hu, JL ;
Chan, CH ;
Xu, YA .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2001, 11 (11) :465-466
[7]   Solving time domain electric field integral equation without the time variable [J].
Ji, Z ;
Sarkar, TK ;
Jung, BH ;
Yuan, MT ;
Salazar-Palma, M .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (01) :258-262
[8]   A comparison of marching-on in time method with marching-on in degree method for the TDIE solver [J].
Jung, B. H. ;
Ji, Z. ;
Sarkar, T. K. ;
Salazar-Palma, M. ;
Yuan, M. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2007, 70 :281-296
[9]  
Jung BH, 2004, PROG EL RES, V45, P291, DOI 10.2528/PIER03082502
[10]   Transient electromagnetic scattering from dielectric objects using the electric field integral equation with Laguerre polynomials as temporal basis functions [J].
Jung, BH ;
Sarkar, TK ;
Chung, YS ;
Salazar-Palma, M ;
Ji, Z ;
Jang, S ;
Kim, K .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (09) :2329-2340