Theoretical and numerical stability results for a viscoelastic swelling porous-elastic system with past history

被引:18
作者
Al-Mahdi, Adel M. [1 ,2 ]
Al-Gharabli, Mohammad M. [1 ,2 ]
Alahyane, Mohamed [3 ]
机构
[1] King Fahd Univ Petr & Minerals, Preparatory Year Program, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Construct & Bldg Mat, Dhahran 31261, Saudi Arabia
[3] Univ Sharjah, RISE, Dept Math, POB 27272, Sharjah, U Arab Emirates
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 11期
关键词
swelling porous problem; viscoelastic; general decay; convex functions; finite element and Crank-Nicolson methods; GENERAL DECAY; EXPONENTIAL STABILITY; THERMOELASTIC SYSTEM; ASYMPTOTIC STABILITY; ENERGY DECAY; TIME DECAY; MEMORY; SOLIDS; RATES; SOILS;
D O I
10.3934/math.2021692
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to establish a general stability result for a one-dimensional linear swelling porous-elastic system with past history, irrespective of the wave speeds of the system. First, we establish an explicit and general decay result under a wider class of the relaxation (kernel) functions. The kernel in our memory term is more general and of a broader class. Further, we get a better decay rate without imposing some assumptions on the boundedness of the history data considered in many earlier results in the literature. We also perform several numerical tests to illustrate our theoretical results. Our output extends and improves some of the available results on swelling porous media in the literature.
引用
收藏
页码:11921 / 11949
页数:29
相关论文
共 56 条
[1]   General and Optimal Decay Result for a Viscoelastic Problem with Nonlinear Boundary Feedback [J].
Al-Gharabli, Mohammad M. ;
Al-Mahdi, Adel M. ;
Messaoudi, Salim A. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2019, 25 (04) :551-572
[2]   New decay results for a viscoelastic-type Timoshenko system with infinite memory [J].
Al-Mahdi, Adel M. ;
Al-Gharabli, Mohammad M. ;
Guesmia, Aissa ;
Messaoudi, Salim A. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01)
[3]   General stability result for a viscoelastic plate equation with past history and general kernel [J].
Al-Mahdi, Adel M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 490 (01)
[4]   Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity [J].
Al-Mahdi, Adel M. .
BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
[5]   New general decay results in an infinite memory viscoelastic problem with nonlinear damping [J].
Al-Mandi, Adel M. ;
Al-Gharabli, Mohammad M. .
BOUNDARY VALUE PROBLEMS, 2019, 2019 (01)
[6]   Energy decay for Timoshenko systems of memory type [J].
Ammar-Khodja, F ;
Benabdallah, A ;
Rivera, JEM ;
Racke, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) :82-115
[7]   General stability result of swelling porous elastic soils with a viscoelastic damping [J].
Apalara, Tijani A. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06)
[8]   A General Decay for a Weakly Nonlinearly Damped Porous System [J].
Apalara, Tijani A. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2019, 25 (03) :311-322
[9]   General decay of solutions in one-dimensional porous-elastic system with memory [J].
Apalara, Tijani A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (02) :457-471
[10]   General stability of memory-type thermoelastic Timoshenko beam acting on shear force [J].
Apalara, Tijani A. .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2018, 30 (02) :291-300