Control of the nonstationary motion of a hopping machine (path tracking)

被引:8
作者
Larin, VB [1 ]
机构
[1] Natl Acad Sci Ukraine, SP Timoshenko Inst Mech, Kiev, Ukraine
关键词
hopping machine; Riccati equation; periodic system;
D O I
10.1023/A:1023973918155
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The problem on control of the nonstationary motion of a hopping machine is solved. It is shown that similarly to a walking machine, this problem can be reduced to finding a periodic solution of the discrete Riccati equation. The simulation results are indicative of the efficiency of the algorithm proposed.
引用
收藏
页码:232 / 241
页数:10
相关论文
共 15 条
  • [1] Aliev F.A., 1998, Optimization of Linear Control Systems: Analytical Methods and Computational Algorithms
  • [2] ARBIB MA, 1990, METAPHORICAL BRAIN
  • [3] BORDYUG BA, 1981, IZV ACAD NAUK SSSR M, P36
  • [4] Larin V. B., 1980, PRIKL MAT MEKH, V44, P1019
  • [5] Control problems for systems with uncertainty
    Larin, VB
    [J]. INTERNATIONAL APPLIED MECHANICS, 2001, 37 (12) : 1539 - 1567
  • [6] Using linear matrix inequalities in synthesis of a stabilizing system for a hopping apparatus
    Larin, VB
    [J]. INTERNATIONAL APPLIED MECHANICS, 2001, 37 (10) : 1352 - 1358
  • [7] LARIN VB, 1978, DOKL AKAD NAUK SSSR+, V239, P67
  • [8] Problems of control of a hopping apparatus
    Larin, VB
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1998, 335B (03): : 579 - 593
  • [9] LARIN VB, 1998, PORBL UPRAVAL INFORM, V33
  • [10] Six-wheeled omnidirectional autonomous mobile robot
    Moore, Kevin L.
    Flann, Nicholas S.
    [J]. IEEE Control Systems Magazine, 2000, 20 (06): : 53 - 66