Hydrogen-induced cracking mechanism of precipitation strengthened austenitic stainless steel weldment

被引:27
作者
Yan, Yingjie [1 ]
Yan, Yu [1 ]
He, Yang [1 ]
Li, Jinxu [1 ]
Su, Yanjing [1 ]
Qiao, Lijie [1 ]
机构
[1] Univ Sci & Technol Beijing, Ctr Corros & Protect, Key Lab Environm Fracture MOE, Beijing 100083, Peoples R China
基金
美国国家科学基金会;
关键词
Precipitation strengthened austenitic stainless steel; Electron beam weld; Microstructure; Hydrogen-induced cracking; ENVIRONMENT EMBRITTLEMENT; IRON-BASE; TENSILE PROPERTIES; MICROSTRUCTURE; FRACTURE; DEFORMATION; DIFFUSION; WELDS;
D O I
10.1016/j.ijhydene.2014.12.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Precipitation strengthened austenitic stainless steels are widely used in hydrogen related applications. However, their applications may face hydrogen damage resulting in hydrogen-induced delayed failure. Results show that the weld is more sensitive to fracture and hydrogen-induced failure than the matrix. High density curved dislocations, abundant of large size precipitates and considerable gamma ' precipitates coarsening are found in the weld. Large size precipitates are found to be major hydrogen traps and preferential microcrack nucleation sites. The gamma ' precipitates coarsening make the weld more ductile than the matrix. With the decrease of the applied stress, hydrogen-induced cracking mechanism in the weld changes from brittle transgranular fracture to brittle intergranular fracture. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2404 / 2414
页数:11
相关论文
共 48 条
[21]  
Kobayashi T, 2009, EFFECTS OF HYDROGEN ON MATERIALS, P211
[22]  
LI YY, 1994, ADV CRYOG ENG, V40, P1283
[23]   Effects of alloy composition and strain hardening on tensile fracture of hydrogen-precharged type 316 stainless steels [J].
Marchi, C. San ;
Somerday, B. P. ;
Tang, X. ;
Schiroky, G. H. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (02) :889-904
[24]   Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures [J].
Marchi, C. San ;
Somerday, B. P. ;
Robinson, S. L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (01) :100-116
[25]   Effect of alloying elements on hydrogen environment embrittlement of AISI type 304 austenitic stainless steel [J].
Martin, M. ;
Weber, S. ;
Theisen, W. ;
Michler, T. ;
Naumann, J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (24) :15888-15898
[26]  
MERRICK RD, 1989, MATER PERFORMANCE, V28, P53
[27]   Toughness and hydrogen compatibility of austenitic stainless steel welds at cryogenic temperatures [J].
Michler, Thorsten .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (16) :4081-4088
[28]   Hydrogen environment embrittlement of stable austenitic steels [J].
Michler, Thorsten ;
San Marchi, Chris ;
Naumann, Joerg ;
Weber, Sebastian ;
Martin, Mauro .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (21) :16231-16246
[29]   Influence of macro segregation on hydrogen environment embrittlement of SUS 316L stainless steel [J].
Michler, Thorsten ;
Lee, Yongwon ;
Gangloff, Richard P. ;
Naumann, Joerg .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (07) :3201-3209
[30]   FUSION ZONE MICROSTRUCTURE OF ELECTRON-BEAM WELDED INCOLOY-903 [J].
NAKKALIL, R ;
RICHARDS, NL ;
CHATURVEDI, MC .
SCRIPTA METALLURGICA ET MATERIALIA, 1992, 26 (04) :545-550