Congruences for frobenius partitions

被引:27
作者
Ono, K [1 ]
机构
[1] INST ADV STUDY,SCH MATH,PRINCETON,NJ 08540
基金
美国国家科学基金会;
关键词
D O I
10.1006/jnth.1996.0041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The partition function p(n) has several celebrated congruence properties which reflect the action of the Hecke operators on certain holomorphic modular forms. In this article similar congruences are proved for c(3)(n), the number of generalized Frobenius partitions of n with 3 colors. We prove (1) c(3)(63n + 50) = 0 mod 7, (2) c(3)(5n + 2) = p(5n + 2/3) mod 5, exept when n = 3T(m) and T-m = m(m + 1)/2 is the mth triangular number, and (3) c(3)(15T(m) + 2) = (-1)(m) (m + 3) mod 5. Congruences (2) and (3) are analogous to Euler's pentagonal number theorem. These congruences are proved by constructing holomorphic modular forms which inherit related congruence properties which are verified computationally via Sturm's criterion. (C) 1996 Academic Press, Inc.
引用
收藏
页码:170 / 180
页数:11
相关论文
共 9 条
[1]  
Andrews G. E., 1976, The Theory of Partitions
[2]  
Gordon B., 1993, Contemp. Math, V143, P415, DOI [DOI 10.1090/CONM/143/01008, 10.1090/conm/143/01008]
[3]  
KOBLITZ N., 1984, INTRO ELLIPTIC CURVE
[4]  
Kolitsch L.W., 1990, P C HONOR PT BATEMAN, P343
[5]   A RELATIONSHIP BETWEEN CERTAIN COLORED GENERALIZED FROBENIUS PARTITIONS AND ORDINARY PARTITIONS [J].
KOLITSCH, LW .
JOURNAL OF NUMBER THEORY, 1989, 33 (02) :220-223
[6]  
LIGOZAT G, 1975, B SOC MATH FRANCE, V43
[7]  
NEWMAN M, 1959, P LOND MATH SOC, V9, P353
[8]  
[No title captured]
[9]  
[No title captured]