Bilayer graphene under pressure: Electron-hole symmetry breaking, valley Hall effect, and Landau levels

被引:22
作者
Munoz, F. [1 ,2 ]
Ojeda Collado, H. P. [3 ,4 ,5 ]
Usaj, Gonzalo [3 ,4 ,5 ]
Sofo, Jorge O. [6 ,7 ]
Balseiro, C. A. [3 ,4 ,5 ]
机构
[1] Univ Chile, Fac Ciencias, Dept Fis, Santiago, Chile
[2] Ctr Desarrollo Nanociencia & Nanotecnol CEDENNA, Santiago, Chile
[3] Comis Nacl Energia Atom, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[4] Comis Nacl Energia Atom, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[5] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[6] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
[7] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; BERRYS PHASE; TRANSPORT;
D O I
10.1103/PhysRevB.93.235443
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electronic structure of bilayer graphene under pressure develops very interesting features with an enhancement of the trigonal warping and a splitting of the parabolic touching bands at the K point of the reciprocal space into four Dirac cones, one at K and three along the T symmetry lines. As pressure is increased, these cones separate in reciprocal space and in energy, breaking the electron-hole symmetry. Due to their energy separation, their opposite Berry curvature can be observed in valley Hall effect experiments and in the structure of the Landau levels. Based on the electronic structure obtained by density functional theory, we develop a low energy Hamiltonian that describes the effects of pressure on measurable quantities such as the Hall conductivity and the Landau levels of the system.
引用
收藏
页数:10
相关论文
共 54 条
  • [1] Topological Insulator Materials
    Ando, Yoichi
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (10)
  • [2] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [3] Colloquium: Andreev reflection and Klein tunneling in graphene
    Beenakker, C. W. J.
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (04) : 1337 - 1354
  • [4] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [5] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
  • [6] Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect
    Castro, Eduardo V.
    Novoselov, K. S.
    Morozov, S. V.
    Peres, N. M. R.
    Dos Santos, J. M. B. Lopes
    Nilsson, Johan
    Guinea, F.
    Geim, A. K.
    Castro Neto, A. H.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (21)
  • [7] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [8] Role of the trigonal warping on the minimal conductivity of bilayer graphene
    Cserti, Jozsef
    Csordas, Andras
    David, Gyula
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (06)
  • [9] Electronic transport in two-dimensional graphene
    Das Sarma, S.
    Adam, Shaffique
    Hwang, E. H.
    Rossi, Enrico
    [J]. REVIEWS OF MODERN PHYSICS, 2011, 83 (02) : 407 - 470
  • [10] Magnetic spectrum of trigonally warped bilayer graphene: Semiclassical analysis, zero modes, and topological winding numbers
    de Gail, R.
    Goerbig, M. O.
    Montambaux, G.
    [J]. PHYSICAL REVIEW B, 2012, 86 (04):